Download presentation
Presentation is loading. Please wait.
1
SECTPLANL GSFC UMD The Collisionless Diffusion Region: An Introduction Michael Hesse NASA GSFC
2
SECTPLANL GSFC UMD Overview: Diffusion region basics The (electron) diffusion region for anti-parallel reconnection The (electron) diffusion region for guide-field reconnection An avenue toward fast MHD reconnection without Hall terms Acknowledgements: J. Birn, M. Kuznetsova, K. Schindler, M. Hoshino, J. Drake
3
SECTPLANL GSFC UMD Magnetic Reconnection: Dissipation Mechanism (How does it work?) Conditions: IMPOSSIBLE (for species s) if
4
SECTPLANL GSFC UMD Electric Field Equations Electron eqn. of motion At reconnection site small, limited by m e ?important? x z
5
SECTPLANL GSFC UMD Results for anti-parallel reconnection: Brief review
6
SECTPLANL GSFC UMD Magnetic field and ion-electron flow velocities P. Pritchett M. Hoshino
7
SECTPLANL GSFC UMD evolution electron-mass independent! Normal Magnetic Flux: => Local electron physics adjusts to permit large scale evolution
8
SECTPLANL GSFC UMD Compare extremes along dashed lines - ion quantities - electron quantities
9
SECTPLANL GSFC UMD -> Ion scale features approx invariant. Large (ion) Scale Features
10
SECTPLANL GSFC UMD Small (electron) Scale Features
11
SECTPLANL GSFC UMD Pressure Tensor
12
SECTPLANL GSFC UMD
13
10.0<x< 11.0 -0.5<z< 0.5 0.076 -0.739 -1.555 -2.370 -3.185 -4.000 log f -0.4 0.2 0.0 0.4 -0.2 u y -0.4-0.20.00.20.4 u x Sample Electron Distribution (P xye ) Thermal inertia (nongyrotropic pressure)-based dissipation seems key to anti-parallel reconnection
14
SECTPLANL GSFC UMD [Biskamp and Schindler, 1971] Can be explained by trapping scale: => Estimate of reconnection electric field [Hesse et al., 1999] [Kuznetsova et al., 2000] “bounce motion” [Horiuchi and Sato, 1996]
15
SECTPLANL GSFC UMD realistic electron mass Ricci et al. 3D – no LHD, kink, … Zeiler et al.
16
SECTPLANL GSFC UMD But, some questions remain… Sausage mode, Buechner et al. Kink, LHD, Ozaki et al. Ion sound mode…
17
SECTPLANL GSFC UMD …and other limitations, such as -Finite (small) system size -Finite (small) ion/electron mass ratio -Finite (small) speed of light -Periodicity …there is work to be done!
18
SECTPLANL GSFC UMD What changes in the presence of guide field? if guide field strong enough electrons are magnetized no bounce orbits no nongyrotropic pressures(?) bulk inertia dominant(?) Method: Theory and PIC simulations
19
SECTPLANL GSFC UMD Simulation Setup - 1-D “Harris” Equilibrium, L x = 2L z = 25.6 c/ pi - Flux function: A = -ln cosh(z/ ) - normal magnetic field perturbation (X type, 2.5% of lobe field) - 0, 40, 80% guide field - Sheet Full-Width = c/ pi - T i /T e = 5 - m i /m e =256 - 100x10 6 particles - 800x800 grid Results averaged over 60 plasma periods
20
SECTPLANL GSFC UMD
21
ByBy P. Pritchett Change of symmetry
22
SECTPLANL GSFC UMD Parallel electric field i t=16 …also analytic theory by Drake et al.
23
SECTPLANL GSFC UMD Electric Field Equations Electron eqn. of motion At reconnection site small, limited by m e ?important? x z
24
SECTPLANL GSFC UMD Magnitude of Bulk Acceleration Contribution Time derivative of (negative) electron velocity in y direction:
25
SECTPLANL GSFC UMD P xye P yze
26
SECTPLANL GSFC UMD -(v ez B x -v ex B z ) -m e (v e.grad v ey )/e
27
SECTPLANL GSFC UMD Electron Distribution Functions F(v x,v y )F(v x,v z )F(v y,v z ) vxvx vyvy vxvx vzvz vyvy vzvz
28
SECTPLANL GSFC UMD..pressure tensor nearly(?) gyrotropic But: if B x, B z =0 -> nongyrotropy important. How to estimate?
29
SECTPLANL GSFC UMD Scaling the pressure tensor evolution equation Assume ignore heat flux…
30
SECTPLANL GSFC UMD Hesse, Kuznetsova, Hoshino, 2001 Pressure tensor approximations
31
SECTPLANL GSFC UMD Electron Pressure Tensors from simulation approximation P xye P yze critical difference at reconnection site!
32
SECTPLANL GSFC UMD coll. skin depth
33
SECTPLANL GSFC UMD Q xxye Q xyze P yza approximation
34
SECTPLANL GSFC UMD Heat Flux Tensor Time Evolution lots of work
35
SECTPLANL GSFC UMD Approximations for Q xyze Assume near gyrotropy, B y >>B x, B z Leading order, P ii >>P jk x,y,x component:
36
SECTPLANL GSFC UMD Approximations for Q xyze From simulation: Approximation: Ok in center, difference due to 4-tensor?
37
SECTPLANL GSFC UMD Scaling of diffusion region => 2 Scale lengths: Collisionless skin depth Electron Larmor radius in guide field
38
SECTPLANL GSFC UMD Physical Mechanism: Larmor orbit interacts with “anti-parallel” B components
39
SECTPLANL GSFC UMD 3D Modeling M. Scholer et al.: Formation of “2D” channel J. Drake et al.: Buneman modes, electron holes, anomalous resistivity
40
SECTPLANL GSFC UMD P. Pritchett: inertia important
41
SECTPLANL GSFC UMD …and other limitations, such as -Finite (small) system size -Finite (small) ion/electron mass ratio -Finite (small) speed of light -Periodicity …there is work to be done!
42
SECTPLANL GSFC UMD Results from GEM reconnection challenge: Hall effect (dispersive waves) speeds up reconnection rate Reconnection rate otherwise independent on model MHD models with simple resistivity show only slow reconnection rates Question: Are Hall effects the only way to include fast reconnection in MHD models?
43
SECTPLANL GSFC UMD Approach: Hall effect result of ion-electron scale separation Eliminate scale separation by - Choosing equal ion and electron mass - Choosing equal ion and electron temperatures Simple and cheap…, includes ion and “electron” kinetic physics “Small” GEM runs with and without guide field “Large” runs, with and without guide field
44
SECTPLANL GSFC UMD GEM-size run, no B y
45
SECTPLANL GSFC UMD GEM-size run, no B y m e =1 m e =1/256
46
SECTPLANL GSFC UMD GEM-size run, B y =0.8
47
SECTPLANL GSFC UMD GEM-size run, B y =0.8 m e =1 m e =1/256
48
SECTPLANL GSFC UMD large run, B y =0.
49
SECTPLANL GSFC UMD large run, B y =0.8
50
SECTPLANL GSFC UMD large run, B y =0.large run, B y =0.8 Reconnection rates similar to GEM problem
51
SECTPLANL GSFC UMD initial B y =0.8 initial B y =0. B y, both large runs, t=40 no quadrupole or quadrupolar modulation!
52
SECTPLANL GSFC UMD large run, B y =0., t=40 P xye P yze v ix j iy
53
SECTPLANL GSFC UMD large run, B y =0.8, t=40 P xye P yze v ix j iy
54
SECTPLANL GSFC UMD Electric Field Equations Electron eqn. of motion x z Approximate representation in MHD:
55
SECTPLANL GSFC UMD Additional slides
56
SECTPLANL GSFC UMD P xye P yze j yi j ye ByBy A tour of the reconnection region…
57
SECTPLANL GSFC UMD Mass Dependence of Electron Diffusion Region: Simulation Setup - 1-D “Harris” Equilibrium, L x = 2L z = 25.6 c/ pi - Flux function: A = -ln cosh(z/ ) - normal magnetic field perturbation (X type, 5% of lobe field) - Sheet Full-Width = c/ pi - T e /T i = 0.2 - m e /m i =1/9-1/100 - pe / ce =5 - 50x10 6 particles - 800x400 grid
58
SECTPLANL GSFC UMD m i =m e, B y =1 rate slightly reduced due to higher plasma mass
59
SECTPLANL GSFC UMD Additional Material
60
SECTPLANL GSFC UMD P yze Magnitude of Pressure Tensor Contribution nene
61
SECTPLANL GSFC UMD Particle Picture: Straight Acceleration and Thermalization Question: Are electrons transiently accelerated while crossing the diffusion region, or is some of the energy thermalized? Approach: Integrate 10 4 electron orbits in vicinity of reconnection region Relevance: straight acceleration -> thermalization ->
62
SECTPLANL GSFC UMD -0.5 0 0.5 1 1.5 2 -12-10-8-6-4-202 kinetic energy change as function of delta y delta Ek y = -2.5605e-05 - 0.17785x R= 0.98882 delta y -0.5 0 0.5 1 1.5 2 -12-10-8-6-4-202 delta y-component of kinetic energy vs. delta y delta Eyk y = -0.027939 - 0.16877x R= 0.9873 delta y Approximately 6% of energy is thermalized
63
SECTPLANL GSFC UMD -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 13.1513.213.2513.313.3513.413.45 orbit( 6293): x-z plane x -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 13.1513.213.2513.313.3513.413.45 orbit( 6293): z-x acceleration phase z x
64
SECTPLANL GSFC UMD Contours of Poloidal Magnetic Field Scale length related to electron Larmor radius
65
SECTPLANL GSFC UMD V max = 0.65 V max = 2.8
66
SECTPLANL GSFC UMD Scaling the pressure tensor evolution equation xy component near reconnection site:
67
SECTPLANL GSFC UMD Reconnection faster for smaller guide fields
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.