Presentation is loading. Please wait.

Presentation is loading. Please wait.

1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT-080211ak.ppt agust,heima,....Jan11/XLS-080211ak.xls.

Similar presentations


Presentation on theme: "1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT-080211ak.ppt agust,heima,....Jan11/XLS-080211ak.xls."— Presentation transcript:

1 1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT-080211ak.ppt agust,heima,....Jan11/XLS-080211ak.xls agust,heima,....Jan11/PXP-080211ak.pxp agust,heima,...Jan11/XLS-080211hrhak.xls

2 H81Br H79Br Estimated values: see agust,heima,....Jan11/XLS-080211ak.xls

3 Calc. B´= 7.2379, D´=0.0006 T=70K Exp. H79Br agust,heima,....Jan11/PXP-080211ak.pxp; Lay:0, Gr:1 Peakspectra("AB_Standard",70.15,0,0,0,0,2456.527,41.93246,7.2379,0.0006) Absorptionspectra("w_stx","w_sty","w_glx","w_gly",0.5,"Gauss",0.1,21) Unknown system  h

4 H79Br H81Br agust,heima,....Jan11/PXP-080211ak.pxp; Lay:0, Gr:1  h

5 Not easy to obtain good fit Possible explanation: The “unknown state”, being very close to the V(v´=m+8) system, is heavily perturbed due to “unknown state” V(v´=m+8) level to level near resonance interaction.

6 Peakspectra("AB_Standard",70.15,0,0,0,0,2456.527,41.93246, 7.2379,-0.016) Absorptionspectra("w_stx","w_sty","w_glx","w_gly",0.5,"Gauss",0.1,21) agust,heima,....Jan11/PXP-090211ak.pxp; Lay:0, Gr:1 Calc. B´= 7.2379, D´=-0.016 T=70K Unknown system  h Exp. H79Br

7 Fit can be obtaiend by using relatively high negative value for D´(= - 0.016 cm-1) which definitly suggests that there is a perturbation effect

8 Peakspectra("AB_Standard",150.15,0,0,0,0,2456.527,41.93246,4.40,0.0017) Absorptionspectra("w_stx","w_sty","w_glx","w_gly",0.5,"Gauss",0.1,21) Calc. B´= 4.40 D´=0.0017 T=150K Exp. H79Br agust,heima,....Jan11/PXP-080211ak.pxp; Lay:0, Gr:1 V(v´=m+8) <-<-X  h

9 2) Energy level shifts and intensity ratios for the F(v´=1) state

10 From Q lines (C&G):  E J´,J´-1 J´ Increase agust,heima,....Jan11/PXP-080211ak.pxp; Lay:1, Gr:4 Coefficient values ± one standard deviation a = 1.2667 ± 0.269 b = 15.597 ± 0.0375

11 Closer look / From Q lines (C&G):  E J´,J´-1 J´ Increase Decrease agust,heima,....Jan11/PXP-080211ak.pxp; Lay:1, Gr:4 Coefficient values ± one standard deviation a = 1.2667 ± 0.269 b = 15.597 ± 0.0375

12 It ought to be possible to derive W 12 (and W 12 ´) and the mixing fractions ( and ) from the data above: i.e. W 12 from the procedure described in http://www3.hi.is/~agust/rannsoknir/rempi/hcl/Jan11/PDF-020111ak.pdf And and from In order to do this more rotational lines / energy levels are needed for V, v´=m+7 than those given by Callaghan and Gordon (C & G)

13 F(v´=1) <-<-X; Q: agust,heima,...Jan11/XLS-080211hrhak.xls

14 The intensity ratio looks convincing for J´= 2-7 The intensity ratio is surprisingly high for J´=8 It is important to evaluate the uncertainties for the intensity ratios We should try to fit the Intensity ratios vs J´by the expression -which should be possible as long as more energy levels can be evaluated For the V(v´=m+7) state All in all we should emphasise to evaluate more energy levels from rotational lines for V(v´=m+7)

15 81Br+ H81Br+ H+ J´=5 J´=6 J´=7 J´=4 3 2 1 0 J´=6,5 F(v´=1)Q V,v´=m+7 Br+ 2 P 3/2 ->-> 4 S 3/2 should be at 79178.33 cm-1 J´=8

16 We need to repeat a scan over the region close to J´=5 peak for The V(v´=m+7) system to find the position of that peak.


Download ppt "1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT-080211ak.ppt agust,heima,....Jan11/XLS-080211ak.xls."

Similar presentations


Ads by Google