Download presentation
Presentation is loading. Please wait.
1
The chromosomes contains the set of instructions for alive beings
Genome Cell Nucleus Tissue The chromosomes contains the set of instructions for alive beings The chromosomes are the volumes of an encyclopedia called Genome
2
Chromosome >human chromosome
TACGTATACTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGCGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCCGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGATCGATGCTATACGACGATCGTAGCTAGCTGCATGCTAGCGATGCTACGATCGATGCTATACGACGATCGTAGCTTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTCGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGATCGATGCTATACGACGATCGTAGCTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGATCGATGCTATACGACGATCGTAGCTGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGGTACGATCGTCGATCGTCAGCTCGATACGTTACGATCTACGATTACGATCATCTATACTATACTATACGATATATCTAGATATCGATCTA.ACTCCATTCTTTAAACCGTACTACACACACTACTGATCGACGATTACGACGACGAAAGGGCCATATCGGCTAACTACATCATAGACAACATCACGGATCGTCTAAGGCCGAGTTAGGTACGATTAACGTACGACTACCTATCGTATATACATCACGGATATAACCTATCTACTACGATTAACACGATCTATCGTACGGCATATGCATCGTATAGCATCGATTAGAATACGTATACGTACGATCGTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGATCGCGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGATCGATGCTATACGACGATCGTAGCTATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGCTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGATGCATGCTAGCGATGCTACGACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGATGCTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACTGCATCGATGCTATACGACGATCGTAGCTACGTACGATCGTACGACGTACGTTACGTACGATCGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTGTCACGTAGCATGCTGACGTACGATCGATTCGATCGATCGTACGATCGTAGCTAGCTAGTCGTAGCGACGTAGGATTCACGTAGCGATGCGTAGCGTAGCATGCTGACGATGCATCGATCGATGCATCATGCTAGCGTAGCTAGCTAGCATGACTGATCGATTAACGGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGTACGGTACACCGCGCACGATCACACGATGCGACGATGCGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGCTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGATCGTACGACTGCTAGCTACGCATGCCTACGTACGTATCCTACGTACGATCGTGCAGCATCGATGCTACGTACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGACGACGATCGATATTAATGCAATCATGCAGCTGCATGCTAGCGATGCTACGTACGATCGTATGCTAGCTAGCATGCATGCATGCATGCAT ………..
3
Recuperació de la informació
16/04/2017 Bioinformatics. Sequence and genome analysis David W. Mount Flexible Pattern Matching in Strings (2002) Gonzalo Navarro and Mathieu Raffinot Algorithms on strings (2001) M. Crochemore, C. Hancart and T. Lecroq
4
String Matching 16/04/2017 String matching: definition of the problem (text,pattern) Exact matching: depends on what we have: text or patterns The patterns ---> Data structures for the patterns 1 pattern ---> The algorithm depends on |p| and || k patterns ---> The algorithm depends on k, |p| and || Extensions Regular Expressions The text ----> Data structure for the text (suffix tree, ...) Approximate matching: Dynamic programming Sequence alignment (pairwise and multiple) Sequence assembly: hash algorithm Probabilistic search: Hidden Markov Models
5
Exact string matching: one pattern
16/04/2017 How does the string algorithms made the search? For instance, given the sequence CTACTACTACGTCTATACTGATCGTAGCTACTACATGC search for the pattern ACTGA. and for the pattern TACTACGGTATGACTAA As you have seen this morning ....
6
Exact string matching: Brute force algorithm
16/04/2017 Example: Given the pattern ATGTA, the search is G T A C T A G A G G A C G T A T G T A C T G ... A T G T A A T G T A A T G T A A T G T A A T G T A A T G T A As you have seen this morning ....
7
Exact string matching: Brute force algorithm
16/04/2017 Which is the next position of the window? How the comparison is made? Text : Pattern : From left to right: prefix Text : Pattern : As you have seen this morning .... The window is shifted only one cell
8
Exact string matching: one pattern
16/04/2017 How does the matching algorithms made the search? There is a sliding window along the text against which the pattern is compared: Pattern : Text : At each step the comparison is made and the window is shifted to the right. As you have seen this morning .... Which are the facts that differentiate the algorithms? How the comparison is made. The length of the shift.
9
Exact string matching: one pattern (text on-line)
16/04/2017 Experimental efficiency (Navarro & Raffinot) BNDM : Backward Nondeterministic Dawg Matching | | BOM : Backward Oracle Matching 64 32 16 Horspool 8 BOM BNDM 4 2 Long. pattern w
10
Horspool algorithm How the comparison is made?
16/04/2017 Which is the next position of the window? How the comparison is made? Text : Pattern : Sufix search Pattern : Text : a As you have seen this morning .... Shift until the next ocurrence of “a” in the pattern: a We need a preprocessing phase to construct the shift table.
11
Horspool algorithm : example
16/04/2017 Given the pattern ATGTA The shift table is: A C G T As you have seen this morning ....
12
Horspool algorithm : example
16/04/2017 Given the pattern ATGTA The shift table is: A 4 C G T As you have seen this morning ....
13
Horspool algorithm : example
16/04/2017 Given the pattern ATGTA The shift table is: A 4 C 5 G T As you have seen this morning ....
14
Horspool algorithm : example
16/04/2017 Given the pattern ATGTA The shift table is: A 4 C 5 G 2 T As you have seen this morning ....
15
Horspool algorithm : example
16/04/2017 Given the pattern ATGTA The shift table is: A 4 C 5 G 2 T 1 As you have seen this morning ....
16
Horspool algorithm : example
16/04/2017 Given the pattern ATGTA The shift table is: A 4 C 5 G 2 T 1 The searching phase: G T A C T A G A G G A C G T A T G T A C T G ... A T G T A A T G T A A T G T A A T G T A A T G T A A T G T A As you have seen this morning ....
17
Exemple algorisme de Horspool
16/04/2017 Given the pattern ATGTA The shift table is: A 4 C 5 G 2 T 1 The searching phase: G T A C T A G A G G A C G T A T G T A C T G ... A T G T A A T G T A A T G T A A T G T A A T G T A A T G T A As you have seen this morning .... A T G T A
18
Qüestions sobre l’algorisme de Horspool
16/04/2017 Given the pattern ATGTA, the shift table is A 4 C 5 G 2 T 1 Given a random text over an equally likely probability distribution (EPD): 1.- Determine the expected shift of the window. And, if the PD is not equally likely? 2.- Determine the expected number of shifts assuming a text of length n. As you have seen this morning .... 3.- Determine the expected number of comparisons in the suffix search phase
19
Exact string matching: one pattern (text on-line)
16/04/2017 Experimental efficiency (Navarro & Raffinot) BNDM : Backward Nondeterministic Dawg Matching | | BOM : Backward Oracle Matching 64 32 16 Horspool 8 BOM BNDM 4 2 Long. pattern w
20
BNDM algorithm How the comparison is made?
16/04/2017 Which is the next position of the window ? How the comparison is made? Text : Pattern : Search for suffixes of T that are factors of Once the next character x is read D3 = D2<<1 & B(x) B(x): mask of x in the pattern P. For instance, if B(x) = ( ) D = ( ) & ( ) = ( ) x That is denoted as D2 = Depends on the value of the leftmost bit of D As you have seen this morning ....
21
BNDM algorithm: exaple
16/04/2017 Given the pattern ATGTA The mask of characters is: B(A) = ( ) B(C) = ( ) B(G) = ( ) B(T) = ( ) The searching phase: G T A C T A G A G G A C G T A T G T A C T G ... A T G T A A T G T A A T G T A A T G T A D1 = ( ) D2 = ( ) & ( ) = ( ) D1 = ( ) D2 = ( ) & ( ) = ( ) As you have seen this morning .... D1 = ( ) D2 = ( ) & ( ) = ( ) D3 = ( ) & ( ) = ( ) D4 = ( ) & ( ) = ( )
22
Exemple algorisme BNDM
16/04/2017 Given the pattern ATGTA The mask of characters is : The searching phase: G T A C T A G A G G A C G T A T G T A C T G ... A T G T A B(A) = ( ) B(C) = ( ) B(G) = ( ) B(T) = ( ) D1 = ( ) A T G T A D2 = ( ) & ( ) = ( ) D3 = ( ) & ( ) = ( ) D4 = ( ) & ( ) = ( ) D5 = ( ) & ( ) = ( ) As you have seen this morning .... D6 = ( ) & ( * * * * * ) = ( ) Trobat!
23
Exemple algorisme BNDM
16/04/2017 Given the pattern ATGTA The mask of characters is : B(A) = ( ) B(C) = ( ) B(G) = ( ) B(T) = ( ) How the shif is determined? The searching phase: G T A C T A G A A T A C G T A T G T A C T G ... A T G T A A T G T A A T G T A D1 = ( ) D2 = ( ) & ( ) = ( ) As you have seen this morning .... D1 = ( ) D2 = ( ) & ( ) = ( ) D3 = ( ) & ( ) = ( )
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.