Download presentation
Presentation is loading. Please wait.
1
EE898.02 Architecture of Digital Systems Lecture 3 Cache Memory
Oct. 8, 2004 Prof. Seok-Bum Ko Electrical Engineering University of Saskatchewan
2
Question: Who Cares About the Memory Hierarchy?
CPU-DRAM Gap 1980: no cache in µproc; level cache on chip (1989 first Intel µproc with a cache on chip) µProc 60%/yr. DRAM 7%/yr. 1 10 100 1000 1980 1981 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 CPU 1982 Processor-Memory Performance Gap: (grows 50% / year) Performance “Moore’s Law” “Less’ Law?” Y-axis is performance X-axis is time Latency Cliché: Not e that x86 didn’t have cache on chip until 1989
3
What is a cache? Small, fast storage used to improve average access time to slow memory. Exploits spatial and temporal locality In computer architecture, almost everything is a cache! Registers a cache on variables First-level cache a cache on second-level cache Second-level cache a cache on memory Memory a cache on disk (virtual memory) TLB a cache on page table Branch-prediction a cache on prediction information? Proc/Regs L1-Cache Bigger Faster L2-Cache Memory Disk, Tape, etc.
4
Levels of the Memory Hierarchy
Upper Level Capacity Access Time Cost Staging Xfer Unit faster CPU Registers 100s Bytes <1s ns Registers Instr. Operands prog./compiler 1-8 bytes Cache 10s-100s K Bytes 1-10 ns $10/ MByte Cache cache cntl 8-128 bytes Blocks Main Memory M Bytes 100ns- 300ns $1/ MByte Memory OS 512-4K bytes Pages Disk 10s G Bytes, 10 ms (10,000,000 ns) $0.0031/ MByte Disk user/operator Mbytes Files Larger Tape infinite sec-min $0.0014/ MByte Tape Lower Level
5
The Principle of Locality
Program access a relatively small portion of the address space at any instant of time. Two Different Types of Locality: Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon (e.g., loops, reuse) Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon (e.g., straightline code, array access) Last 15 years, HW (hardware) relied on locality for speed The principle of locality states that programs access a relatively small portion of the address space at any instant of time. This is kind of like in real life, we all have a lot of friends. But at any given time most of us can only keep in touch with a small group of them. There are two different types of locality: Temporal and Spatial. Temporal locality is the locality in time which says if an item is referenced, it will tend to be referenced again soon. This is like saying if you just talk to one of your friends, it is likely that you will talk to him or her again soon. This makes sense. For example, if you just have lunch with a friend, you may say, let’s go to the ball game this Sunday. So you will talk to him again soon. Spatial locality is the locality in space. It says if an item is referenced, items whose addresses are close by tend to be referenced soon. Once again, using our analogy. We can usually divide our friends into groups. Like friends from high school, friends from work, friends from home. Let’s say you just talk to one of your friends from high school and she may say something like: “So did you hear so and so just won the lottery.” You probably will say NO, I better give him a call and find out more. So this is an example of spatial locality. You just talked to a friend from your high school days. As a result, you end up talking to another high school friend. Or at least in this case, you hope he still remember you are his friend. +3 = 10 min. (X:50)
6
Memory Hierarchy: Terminology
Hit: data appears in some block in the upper level (example: Block X) Hit Rate: the fraction of memory access found in the upper level Hit Time: Time to access the upper level which consists of RAM access time + Time to determine hit/miss Miss: data needs to be retrieved from a block in the lower level (Block Y) Miss Rate = 1 - (Hit Rate) Miss Penalty: Time to replace a block in the upper level + Time to deliver the block the processor Lower Level Memory Upper Level To Processor From Processor Blk X Blk Y A HIT is when the data the processor wants to access is found in the upper level (Blk X). The fraction of the memory access that are HIT is defined as HIT rate. HIT Time is the time to access the Upper Level where the data is found (X). It consists of: (a) Time to access this level. (b) AND the time to determine if this is a Hit or Miss. If the data the processor wants cannot be found in the Upper level. Then we have a miss and we need to retrieve the data (Blk Y) from the lower level. By definition (definition of Hit: Fraction), the miss rate is just 1 minus the hit rate. This miss penalty also consists of two parts: (a) The time it takes to replace a block (Blk Y to BlkX) in the upper level. (b) And then the time it takes to deliver this new block to the processor. It is very important that your Hit Time to be much much smaller than your miss penalty. Otherwise, there will be no reason to build a memory hierarchy. +2 = 14 min. (X:54)
7
Cache Measures Hit rate: fraction found in that level
So high that usually talk about Miss rate Miss rate fallacy: as MIPS to CPU performance, miss rate to average memory access time in memory Average memory-access time = Hit time + Miss rate x Miss penalty (ns or clocks) Miss penalty: time to replace a block from lower level, including time to replace in CPU access time: time to lower level = f(latency to lower level) transfer time: time to transfer block = f(between upper & lower levels)
8
Simplest Cache: Direct Mapped
Memory Address Memory 4 Byte Direct Mapped Cache 1 Cache Index 2 3 1 4 2 5 3 6 Location 0 can be occupied by data from: Memory location 0, 4, 8, ... etc. In general: any memory location whose 2 LSBs of the address are 0s Address<1:0> => cache index Which one should we place in the cache? How can we tell which one is in the cache? 7 8 9 A Let’s look at the simplest cache one can build. A direct mapped cache that only has 4 bytes. In this direct mapped cache with only 4 bytes, location 0 of the cache can be occupied by data form memory location 0, 4, 8, C, ... and so on. While location 1 of the cache can be occupied by data from memory location 1, 5, 9, ... etc. So in general, the cache location where a memory location can map to is uniquely determined by the 2 least significant bits of the address (Cache Index). For example here, any memory location whose two least significant bits of the address are 0s can go to cache location zero. With so many memory locations to chose from, which one should we place in the cache? Of course, the one we have read or write most recently because by the principle of temporal locality, the one we just touch is most likely to be the one we will need again soon. Of all the possible memory locations that can be placed in cache Location 0, how can we tell which one is in the cache? +2 = 22 min. (Y:02) B C D E F
9
1 KB Direct Mapped Cache, 32B blocks
For a 2 ** N byte cache: The uppermost (32 - N) bits are always the Cache Tag The lowest M bits are the Byte Select (Block Size = 2 ** M) 31 9 4 Cache Tag Example: 0x50 Cache Index Byte Select Ex: 0x01 Ex: 0x00 Stored as part of the cache “state” Valid Bit Cache Tag Cache Data : Byte 31 Byte 1 Byte 0 : Let’s use a specific example with realistic numbers: assume we have a 1 KB direct mapped cache with block size equals to 32 bytes. In other words, each block associated with the cache tag will have 32 bytes in it (Row 1). With Block Size equals to 32 bytes, the 5 least significant bits of the address will be used as byte select within the cache block. Since the cache size is 1K byte, the upper 32 minus 10 bits, or 22 bits of the address will be stored as cache tag. The rest of the address bits in the middle, that is bit 5 through 9, will be used as Cache Index to select the proper cache entry. +2 = 30 min. (Y:10) 0x50 Byte 63 Byte 33 Byte 32 1 2 3 : : : : Byte 1023 Byte 992 31
10
Two-way Set Associative Cache
N-way set associative: N entries for each Cache Index N direct mapped caches operates in parallel (N typically 2 to 4) Example: Two-way set associative cache Cache Index selects a “set” from the cache The two tags in the set are compared in parallel Data is selected based on the tag result Cache Index Valid Cache Tag Cache Data Cache Data Cache Block 0 Cache Tag Valid : Cache Block 0 : : : This is called a 2-way set associative cache because there are two cache entries for each cache index. Essentially, you have two direct mapped cache works in parallel. This is how it works: the cache index selects a set from the cache. The two tags in the set are compared in parallel with the upper bits of the memory address. If neither tag matches the incoming address tag, we have a cache miss. Otherwise, we have a cache hit and we will select the data on the side where the tag matches occur. This is simple enough. What is its disadvantages? +1 = 36 min. (Y:16) Compare Adr Tag Compare 1 Sel1 Mux Sel0 OR Cache Block Hit
11
Disadvantage of Set Associative Cache
N-way Set Associative Cache v. Direct Mapped Cache: N comparators vs. 1 Extra MUX delay for the data Data comes AFTER Hit/Miss In a direct mapped cache, Cache Block is available BEFORE Hit/Miss: Possible to assume a hit and continue. Recover later if miss. Cache Data Cache Block 0 Cache Tag Valid : Cache Index Mux 1 Sel1 Sel0 Cache Block Compare Adr Tag OR Hit First of all, a N-way set associative cache will need N comparators instead of just one comparator (use the right side of the diagram for direct mapped cache). A N-way set associative cache will also be slower than a direct mapped cache because of this extra multiplexer delay. Finally, for a N-way set associative cache, the data will be available AFTER the hit/miss signal becomes valid because the hit/mis is needed to control the data MUX. For a direct mapped cache, that is everything before the MUX on the right or left side, the cache block will be available BEFORE the hit/miss signal (AND gate output) because the data does not have to go through the comparator. This can be an important consideration because the processor can now go ahead and use the data without knowing if it is a Hit or Miss. Just assume it is a hit. Since cache hit rate is in the upper 90% range, you will be ahead of the game 90% of the time and for those 10% of the time that you are wrong, just make sure you can recover. You cannot play this speculation game with a N-way set-associatvie cache because as I said earlier, the data will not be available to you until the hit/miss signal is valid. +2 = 38 min. (Y:18)
12
4 Questions for Memory Hierarchy
Q1: Where can a block be placed in the upper level? (Block placement) Q2: How is a block found if it is in the upper level? (Block identification) Q3: Which block should be replaced on a miss? (Block replacement) Q4: What happens on a write? (Write strategy)
13
Q1: Where can a block be placed in the upper level?
Block 12 placed in 8 block cache: Fully associative, direct mapped, 2-way set associative S.A. Mapping = Block Number Modulo Number Sets Direct Mapped (12 mod 8) = 4 2-Way Assoc (12 mod 4) = 0 Full Mapped Cache Memory
14
Q2: How is a block found if it is in the upper level?
Tag on each block No need to check index or block offset Increasing associativity shrinks index, expands tag Block Offset Block Address Index Tag
15
Q3: Which block should be replaced on a miss?
Easy for Direct Mapped Set Associative or Fully Associative: Random LRU (Least Recently Used) FIFO (First In First Out) Ref. fig. 5.6, p. 401 (3rd edition)
16
Q4: What happens on a write?
Write through—The information is written to both the block in the cache and to the block in the lower-level memory. Write back—The information is written only to the block in the cache. The modified cache block is written to main memory only when it is replaced. is block clean or dirty? Pros and Cons of each? WT: read misses cannot result in writes WB: no repeated writes to the same location WT always combined with write buffers so that don’t wait for lower level memory
17
A Modern Memory Hierarchy
By taking advantage of the principle of locality: Present the user with as much memory as is available in the cheapest technology. Provide access at the speed offered by the fastest technology. Control Datapath Secondary Storage (Disk) Processor Registers Main Memory (DRAM) Second Level Cache (SRAM) On-Chip 1s 10,000,000s (10s ms) Speed (ns): 10s 100s Gs Size (bytes): Ks Ms Tertiary (Disk/Tape) 10,000,000,000s (10s sec) Ts The design goal is to present the user with as much memory as is available in the cheapest technology (points to the disk). While by taking advantage of the principle of locality, we like to provide the user an average access speed that is very close to the speed that is offered by the fastest technology. (We will go over this slide in details in the next lecture on caches). +1 = 16 min. (X:56)
18
Example: Harvard Architecture
Unified vs. Separate I&D (Harvard) Table on page 384 (2nd edition): 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47% 32KB unified: Aggregate miss rate=1.99% Which is better (ignore L2 cache)? Assume 33% data ops 75% accesses from instructions (1.0/1.33) hit time=1, miss time=50 Note that data hit has 1 stall for unified cache (only one port) AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05 AMATUnified=75%x(1+1.99%x50)+25%x( %x50)= 2.24 Proc I-Cache-1 Unified Cache-1 Cache-2 D-Cache-1
19
Improving Cache Performance
1. Reduce the miss rate, 2. Reduce the miss penalty, or 3. Reduce the time to hit in the cache.
20
Reducing Misses Classifying Misses: 3 Cs
Compulsory—The first access to a block is not in the cache, so the block must be brought into the cache. Also called cold start misses or first reference misses. (Misses in even an Infinite Cache) Capacity—If the cache cannot contain all the blocks needed during execution of a program, capacity misses will occur due to blocks being discarded and later retrieved. (Misses in Fully Associative Size X Cache) Conflict—If block-placement strategy is set associative or direct mapped, conflict misses (in addition to compulsory & capacity misses) will occur because a block can be discarded and later retrieved if too many blocks map to its set. Also called collision misses or interference misses. (Misses in N-way Associative, Size X Cache) More recent, 4th “C”: Coherence - Misses caused by cache coherence. Intuitive Model by Mark Hill
21
1. Reduce Misses via Larger Block Size
22
2. Reduce Misses via Higher Associativity
2:1 Cache Rule: Miss Rate DM cache size N Miss Rate 2-way cache size N/2
23
3. Reducing Misses via a “Victim Cache”
How to combine fast hit time of direct mapped yet still avoid conflict misses? Add buffer to place data discarded from cache Jouppi [1990]: 4-entry victim cache removed 20% to 95% of conflicts for a 4 KB direct mapped data cache Used in Alpha, HP machines TAGS DATA Tag and Comparator One Cache line of Data Tag and Comparator One Cache line of Data Tag and Comparator One Cache line of Data Tag and Comparator One Cache line of Data To Next Lower Level In Hierarchy
24
4. Reducing Misses via “Pseudo-Associativity”
How to combine fast hit time of Direct Mapped and have the lower conflict misses of 2-way SA cache? Divide cache: on a miss, check other half of cache to see if there, if so have a pseudo-hit (slow hit) Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles Better for caches not tied directly to processor (L2) Used in MIPS R1000 L2 cache, similar in UltraSPARC Hit Time Pseudo Hit Time Miss Penalty Time
25
5. Reducing Misses by Hardware Prefetching of Instructions & Data
E.g., Instruction Prefetching Alpha fetches 2 blocks on a miss Extra block placed in “stream buffer” On miss check stream buffer Works with data blocks too: Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 4 streams got 43% Palacharla & Kessler [1994] for scientific programs for 8 streams got 50% to 70% of misses from 2 64KB, 4-way set associative caches Prefetching relies on having extra memory bandwidth that can be used without penalty
26
6. Reducing Misses by Software Prefetching Data
Data Prefetch Load data into register (HP PA-RISC loads) Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9) Special prefetching instructions cannot cause faults; a form of speculative execution Prefetching comes in two flavors: Binding prefetch: Requests load directly into register. Must be correct address and register! Non-Binding prefetch: Load into cache. Can be incorrect. Frees HW/SW to guess! Issuing Prefetch Instructions takes time Is cost of prefetch issues < savings in reduced misses? Higher superscalar reduces difficulty of issue bandwidth
27
7. Reducing Misses by Compiler Optimizations
McFarling [1989] reduced caches misses by 75% on 8KB direct mapped cache, 4 byte blocks in software Instructions Reorder procedures in memory so as to reduce conflict misses Profiling to look at conflicts(using tools they developed) Data Merging Arrays: improve spatial locality by single array of compound elements vs. 2 arrays Loop Interchange: change nesting of loops to access data in order stored in memory Loop Fusion: Combine 2 independent loops that have same looping and some variables overlap Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs. going down whole columns or rows
28
Merging Arrays Example
/* Before: 2 sequential arrays */ int val[SIZE]; int key[SIZE]; /* After: 1 array of structures */ struct merge { int val; int key; }; struct merge merged_array[SIZE]; Reducing conflicts between val & key; improve spatial locality
29
Loop Interchange Example
/* Before */ for (k = 0; k < 100; k = k+1) for (j = 0; j < 100; j = j+1) for (i = 0; i < 5000; i = i+1) x[i][j] = 2 * x[i][j]; /* After */ Sequential accesses instead of striding through memory every 100 words; improved spatial locality
30
Loop Fusion Example /* Before */ for (i = 0; i < N; i = i+1) for (j = 0; j < N; j = j+1) a[i][j] = 1/b[i][j] * c[i][j]; d[i][j] = a[i][j] + c[i][j]; /* After */ { a[i][j] = 1/b[i][j] * c[i][j]; d[i][j] = a[i][j] + c[i][j];} 2 misses per access to a & c vs. one miss per access; improve temporal locality
31
Blocking Example Two Inner Loops:
/* Before */ for (i = 0; i < N; i = i+1) for (j = 0; j < N; j = j+1) {r = 0; for (k = 0; k < N; k = k+1){ r = r + y[i][k]*z[k][j];}; x[i][j] = r; }; Two Inner Loops: Read all NxN elements of z[] Read N elements of 1 row of y[] repeatedly Write N elements of 1 row of x[] Capacity Misses a function of N & Cache Size: 2N3 + N2 => (assuming no conflict; otherwise …) Idea: compute on BxB submatrix that fits
32
Blocking Example B called Blocking Factor
/* After */ for (jj = 0; jj < N; jj = jj+B) for (kk = 0; kk < N; kk = kk+B) for (i = 0; i < N; i = i+1) for (j = jj; j < min(jj+B-1,N); j = j+1) {r = 0; for (k = kk; k < min(kk+B-1,N); k = k+1) { r = r + y[i][k]*z[k][j];}; x[i][j] = x[i][j] + r; }; B called Blocking Factor Capacity Misses from 2N3 + N2 to N3/B+2N2 Conflict Misses Too? Improve temporal locality by accessing “blocks” of data repeatedly vs. going down whole columns or rows
33
Summary: Miss Rate Reduction
3 Cs: Compulsory, Capacity, Conflict 1. Reduce Misses via Larger Block Size 2. Reduce Misses via Higher Associativity 3. Reducing Misses via Victim Cache 4. Reducing Misses via Pseudo-Associativity 5. Reducing Misses by HW Prefetching Instr, Data 6. Reducing Misses by SW Prefetching Data 7. Reducing Misses by Compiler Optimizations Prefetching comes in two flavors: Binding prefetch: Requests load directly into register. Must be correct address and register! Non-Binding prefetch: Load into cache. Can be incorrect. Frees HW/SW to guess!
34
Improving Cache Performance
1. Reduce the miss rate, 2. Reduce the miss penalty, or 3. Reduce the time to hit in the cache.
35
Write Policy: Write-Through vs Write-Back
Write-through: all writes update cache and underlying memory/cache Can always discard cached data - most up-to-date data is in memory Cache control bit: only a valid bit Write-back: all writes simply update cache Can’t just discard cached data - may have to write it back to memory Cache control bits: both valid and dirty bits Other Advantages: Write-through: memory (or other processors) always have latest data Simpler management of cache Write-back: much lower bandwidth, since data often overwritten multiple times Better tolerance to long-latency memory?
36
Write Policy 2: Write Allocate vs Non-Allocate (What happens on write-miss)
Write allocate: allocate new cache line in cache Usually means that you have to do a “read miss” to fill in rest of the cache-line! Alternative: per/word valid bits Write non-allocate (or “write-around”): Simply send write data through to underlying memory/cache - don’t allocate new cache line!
37
1. Reducing Miss Penalty: Read Priority over Write on Miss
buffer CPU in out DRAM (or lower mem) Write Buffer
38
1. Reducing Miss Penalty: Read Priority over Write on Miss
Write-through with write buffers offer RAW conflicts with main memory reads on cache misses If simply wait for write buffer to empty, might increase read miss penalty (old MIPS 1000 by 50% ) Check write buffer contents before read; if no conflicts, let the memory access continue Write-back also want buffer to hold misplaced blocks Read miss replacing dirty block Normal: Write dirty block to memory, and then do the read Instead copy the dirty block to a write buffer, then do the read, and then do the write CPU stall less since restarts as soon as do read
39
2. Reducing Miss Penalty: Early Restart and Critical Word First
Don’t wait for full block to be loaded before restarting CPU Early Restart—As soon as the requested word of the block arrives, send it to the CPU and let the CPU continue execution Critical Word First—Request the missed word first from memory and send it to the CPU as soon as it arrives; let the CPU continue execution while filling the rest of the words in the block. Also called wrapped fetch and requested word first Generally useful only in large blocks, Spatial locality a problem; tend to want next sequential word, so not clear if benefit by early restart block
40
3. Reducing Miss Penalty: Non-blocking Caches to reduce stalls on misses
Non-blocking cache or lockup-free cache allow data cache to continue to supply cache hits during a miss requires F/E bits on registers or out-of-order execution requires multi-bank memories “hit under miss” reduces the effective miss penalty by working during miss vs. ignoring CPU requests “hit under multiple miss” or “miss under miss” may further lower the effective miss penalty by overlapping multiple misses Significantly increases the complexity of the cache controller as there can be multiple outstanding memory accesses Requires multiple memory banks (otherwise cannot support) Pentium Pro allows 4 outstanding memory misses
41
4. Add a second-level cache
L2 Equations AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1 Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2 AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 + Miss PenaltyL2) Definitions: Local miss rate— misses in this cache divided by the total number of memory accesses to this cache (Miss rateL2) Global miss rate—misses in this cache divided by the total number of memory accesses generated by the CPU (Miss RateL1 x Miss RateL2) Global Miss Rate is what matters
42
Comparing Local and Global Miss Rates
32 KByte 1st level cache; Increasing 2nd level cache Global miss rate close to single level cache rate provided L2 >> L1 Don’t use local miss rate L2 not tied to CPU clock cycle! Cost & A.M.A.T. Generally Fast Hit Times and fewer misses Since hits are few, target miss reduction Linear Cache Size Log Cache Size
43
Reducing Miss Penalty Summary
Four techniques Read priority over write on miss Early Restart and Critical Word First on miss Non-blocking Caches (Hit under Miss, Miss under Miss) Second Level Cache Can be applied recursively to Multilevel Caches Danger is that time to DRAM will grow with multiple levels in between First attempts at L2 caches can make things worse, since increased worst case is worse
44
Improving Cache Performance
1. Reduce the miss rate, 2. Reduce the miss penalty, or 3. Reduce the time to hit in the cache.
45
1. Fast Hit times via Small and Simple Caches
Why Alpha has 8KB Instruction and 8KB data cache + 96KB second level cache? Small data cache and clock rate Direct Mapped, on chip
46
2. Fast hits by Avoiding Address Translation
CPU CPU CPU VA VA VA VA Tags TB $ PA Tags $ TB PA VA PA L2 $ $ TB MEM PA PA MEM MEM Overlap $ access with VA translation: requires $ index to remain invariant across translation Conventional Organization Virtually Addressed Cache Translate only on miss Synonym Problem
47
2. Fast hits by Avoiding Address Translation
Send virtual address to cache? Called Virtually Addressed Cache or just Virtual Cache vs. Physical Cache Every time process is switched logically must flush the cache; otherwise get false hits Cost is time to flush + “compulsory” misses from empty cache Dealing with aliases (sometimes called synonyms); Two different virtual addresses map to same physical address I/O must interact with cache, so need virtual address Solution to aliases HW guarantees covers index field & direct mapped, they must be unique; called page coloring Solution to cache flush Add process identifier tag that identifies process as well as address within process: can’t get a hit if wrong process
48
2. Fast Cache Hits by Avoiding Translation: Index with Physical Portion of Address
If index is physical part of address, can start tag access in parallel with translation so that can compare to physical tag Limits cache to page size: what if want bigger caches and uses same trick? Higher associativity moves barrier to right Page coloring Page Address Page Offset Address Tag Index Block Offset
49
What is the Impact of What You’ve Learned About Caches?
: Speed = ƒ(no. operations) 1990 Pipelined Execution & Fast Clock Rate Out-of-Order execution Superscalar Instruction Issue 1998: Speed = ƒ(non-cached memory accesses) What does this mean for Compilers?,Operating Systems?, Algorithms? Data Structures?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.