Download presentation
1
LINEAR CONTROL SYSTEMS
Ali Karimpour Assistant Professor Ferdowsi University of Mashhad <<<1.1>>> ###Control System Design### {{{Control, Design}}}
2
Different representations of control systems
Lecture 3 Different representations of control systems Topics to be covered include: High Order Differential Equation. (HODE model) State Space model. (SS model) Transfer Function. (TF model) State Diagram. (SD model)
3
High order differential equation (HODE).
معادلات ديفرانسيل مرتبه بالا HODE model
4
Example 1: A high order differential equation (HODE).
مثال 1: يک معادله ديفرانسيل مرتبه بالا ورودی خروجی HODE model
5
Example 2: Another high order differential equation.
مثال2: مثالی ديگر از معادله ديفرانسيل مرتبه بالا خروجی ورودی HODE model eb
6
State Space Models (SS)
معادلات فضای حالت For continuous time systems SS model For linear time invariant continuous time systems <<<3.6>>> ###State Space Models### SS model
7
State Space Models معادلات فضای حالت فرم کلی فضای حالتی سيستمهای LTI
General form of LTI systems in state space form فرم کلی فضای حالتی سيستمهای LTI <<<3.6>>> ###State Space Models### SS model
8
Example 3: A linear time invariant continuous time systems
مثال3: يک سيستم خطی غير متغير با زمان (LTI) output SS model
9
Example 3: Continue مثال3: ادامه
The equations can be rearranged as follows:ساده سازی We have a linear state space model with مدل خطی فضای حالتی
10
A demonstration robot containing several servo motors
مثالی از موتور dc در ربات
11
Example 4: DC motor مثال 4: موتور DC e(t) - the electrical torque
J - be the inertia of the shaft e(t) - the electrical torque ia(t) - the armature current k1; k2 - constants R - the armature resistance HODE model SS model
12
Different representations
نمايشهای مختلف SD model HODE model TF model SS model
13
Linear high order differential equation
معادلات ديفرانسيل مرتبه بالای خطی The study of differential equations of the type described above is a rich and interesting subject. Of all the methods available for studying linear differential equations, one particularly useful tool is provided by Laplace Transforms. <<<4.2>>> ###Linear Continuous Time Models### مطالعه معادلات ديفرانسيل مرتبه بالای خطی فوق موضوع بسيار جالبی بوده و يک روش خاص حل آن استفاده از تبديل لاپلاس است.
14
Table : Laplace transform table
جدول تبديل لاپلاس u(t) - u(t-τ)
15
Table : Laplace transform properties.
خواص تبديل لاپلاس y(t-τ) u(t-τ)
16
Transfer Function model
مدل تابع انتقال TF model <<<4.5>>> ###Transfer Functions### Or Input-output model HODE model TF model
17
Different representations
نمايشهای مختلف SD model HODE model TF model SS model
18
But how can we change SS model to TF model?
اما چگونه معادلات فضای حالت را به تابع انتقال تبديل کنيم Use Laplace transform Then Let initial condition zero SS model TF model
19
Different representations
نمايشهای مختلف SD model HODE model TF model SS model
20
TF model properties خواص مدل تابع انتقال 1- It is available just for linear systems. 2- It is derived by zero initial condition. 3- It just shows the relation between input and output so it may lose some information. 4- It can be used to show delay systems but SS can not.
21
Example 5: A system with pure time delay
مثال 5: سيستمی با تاخير ثابت
22
State diagram دياگرام حالت s -1 x2(0) x1(s) x2(s) SD model
23
State diagram to state space
دياگرام حالت به معادلات حالت SD model SS model
24
Different representations
نمايشهای مختلف SD model HODE model TF model SS model
25
Different representations
نمايشهای مختلف HODE SS Realization SD TF Mason’s rule Discussed in this lecture Will be discussed in next lecture
26
Exercises 2-1 Find the SS model and TF function model for example 1.
2-3 Find the TF function model for example 3. 2-4 Find the TF function model for example 4. a) Suppose angular position as output b) Suppose angular velocity as output 2-5 In example 5 find the output a) the input is e-2t b) the input is unit step
27
Exercises (Continue) 2-6 In the different representation slide show the validity of red directions 2-7 Change the equations derived in example 2 to one order 3 HODE.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.