Download presentation
Presentation is loading. Please wait.
1
Probing nuclear potential with reactions Krzysztof Rusek Heavy Ion Laboratory, University of Warsaw, www.slcj.uw.edu.pl The Andrzej Soltan Institute for Nuclear Studies, www.ipj.gov.pl
2
Going out of the valley of stability Can we use the standard form of effective nucleus- nucleus potential? Magic numbers are no longer magic Nuclear halos Importance of three-body forces Granulation of nuclear matter etc.
3
Effective nucleus-nucleus potential V = Vo + iW Vo : W = 0.5 Vo G.R. Satchler, W.G. Love, Phys.Rep. 55 (1979)183
4
Elastic scattering Deviation from Rutherford c.s. at very forward angles 6 Li + 208 Pb 6 He + 208 Pb Y. Kucuk, N. Keeley PRC 79 067601 (2009)
5
Elastic scattering Structure effects important! L. Acosta et al. EPJ A in print ↑ ↓
6
Complete fusion R V
7
Supression above the Coulomb barrier L.R. Gasques et al. PRC79 (2009) 034605
8
Complete fusion Enhancement below the Coulomb barrier S.M. Lukyanov et al. PLB 670 (2009) 321 ↑
9
The method (continuum-discretized coupled-channels) [T + ε g.s. – E + ] χ el (R) = χ inel (R)......................... Φ(r,R) = ψ g.s. (r)χ el (R) + ψ 1exc (r)χ inel (R) +..
10
The method at work Structure of 6 He is ”reflected” in elastic scattering close to the barrier K. R. PRC72, 037603 ↓
11
The concept of DPP (dynamic polarization potential) local, L-dependent DPPs, many methods to derive L-independent DPP. If the method is working well, results (σ el ) should be close to CDCC V = Vo + iW + DPP Method 1: inversion S → V IP method of R.S. Mackintosh Review of IP method: V.I. Kukulin and R.S.Mackintosh, J. Phys. G: Nucl. Part. Phys. 30, R1 (2004) Method 2: „trivially equivalent potential” [T + Vo + i W + DPP] χ el (R) = E χ el (R) χ el (R) from CDCC calculations
12
Case 1 – 4 He + 238 U Solid, dashed – CDCC, Dotted – OM+DPP Strong repulsion at the surface is due to nuclear interactions (absorption) 238 U Level Scheme < E(level) <Gamma Energy Level Energy Level T1/2 Level Spin-parity Final Level Highlight: Image Height: Level Width: Band Spacing: List of levels Bands: 1 2 3 4 5 6 7 8 9 10 11 12 13 Non-band levels
13
Case 1 – 4 He + 238 U Solid, dashed – CC, Dotted – OM+DPP Strong repulsion at the surface is due to nuclear interactions (absorption) 238 U Level Scheme < E(level) <Gamma Energy Level Energy Level T1/2 Level Spin-parity Final Level Highlight: Image Height: Level Width: Band Spacing: List of levels Bands: 1 2 3 4 5 6 7 8 9 10 11 12 13 Non-band levels Exp. data of Budzanowski et al., PL 11 (1964) 74
14
Solid – CDCC, dashed – OM+DPP Case 2 – 7 Li + 208 Pb Coupling with unbound states generates similar DPP as with bound state Exp. data Keeley et al., NPA 571 (1994) 326
15
Case 3 – 6 He + 208 Pb Long range attraction due to dipole polarizability Contiunnum dominated by L=1 states Exp. data A. Sanchez-Benitez et al., NPA803 (2008) 30
16
Similar tendency – repulsion at the surface and long range attraction reflecting dipole couplings with the continuum Conclusion
17
DPP real = V 1 df/dR + V 2 g(R) DPP imag = W 1 df/dR + W 2 g(R) f(R) = [1+exp(R-R 0,i )/a 1 ] g(R) = [1+exp(R-R 0,i )/a 2 ] Parametrization V 1 /W 1 V 2 /W 2 R o,i a1a1 a2a2 real6.50.2010.30.806.0 imag6.50.359.80.503.0
18
V = Vo + i W + DPP Explanation of all the effects observed for el. scatt. and fusion. Consequences
19
Prediction for fusion barrier distribution – shifts it to higher energies and make broader Consequences K. Zerva et al., PRC80(2009)017601 6 Li + 28 Si
20
Recipe V = Vo + iW + DPP Vo – from densities W – a half of V 0 DPP – coupling with direct reaction channels
21
Parametrization V 1 /W 1 V 2 /W 2 R o,i a1a1 a2a2 real6.50.2010.30.806.0 imag6.50.359.80.503.0 V 1 /W 1 V 2 /W 2 R o,i a1a1 a2a2 real6.50.0510.050.503.0 imag0.06.010.30 -0.40 V 1 /W 1 V 2 /W 2 R o,i a1a1 a2a2 real6.50.188.20.552.8 imag0.30.1810.80.553.0 α + 238 U 7 Li + 208 Pb 6 He + 208 Pb
22
Energies 2 ÷10 MeV/A Ions 10 B ÷ 40 Ar
23
Potential from transfer reaction analysis Probability: potential a + A + structure + potential b + B a + A B + b
24
10 B + 7 Li → 8 Be + 9 Be A.T. Rudchik et al. PRC 79 054609 (2009)
25
The method (continuum-discretized coupled-channels) [T + ε i – E + ] χ i (R) = χ k (R) Φ(r,R) = ψ 1 (r)χ 1 (R) + ψ 2 (r)χ 2 (R) + ….. prof. G. Rawitscher
26
Input parameters - Structure of the projectile (wave functions) - Fragment – target interactions No free parameters
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.