Download presentation
Presentation is loading. Please wait.
1
e-mail: sabine.petit@univ-poitiers.fr Pauline ANDRIEUX Sabine PETIT Alain DECARREAU FRE3114 CNRS, HydrASA Université de Poitiers 40, ave. du Recteur Pineau 86022 POITIERS Cedex FRANCE
2
- determine the experimental conditions which led to mineral crystallization (in very simplified systems) constrain possible conditions of formation for those minerals - obtain good reference minerals with monitored crystal chemistry determine their spectroscopic fingerprint
3
BeidelliteNontronite Tetrahedral charge Montmorillonite Octahedral charge Fe 3+ -Montmorillonite (Theoretical)
4
(Si (4-x) Al, Fe 3+ x ) Fe 3+ 2 O 10 (OH) 2 M + x IV VI Fe 3+ - nontronite (Si (4-x) Fe 3+ x ) Fe 3+ 2 O 10 (OH) 2 M + x nontronite (Si (4-x) Al x ) (Al, Fe 3+ ) 2 O 10 (OH) 2 M + x Beidellite
5
Ditrigonal cavity Tetrahedral sheet Octahedral sheet R(VI), OH R(IV) O Tetrahedral sheet dioctahedral (tv) dioctahedral (cv) Ditrigonal cavity Tetrahedral sheet Octahedral sheet R(VI), OH R(IV) O Tetrahedral sheet Schematic representation of the octahedral sheet
6
dioctahedral (tv)dioctahedral (cv) O H \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ h OH R = Al, Fe 3+
7
dioctahedral (tv)dioctahedral (cv) OH R = Al, Fe 3+ Fe 3+ H+H+ Al O vacancy
8
Ferruginous smectite SWa-1 NIRMIR OH region + OH (Si 3.70 Al 0.30 ) (Al 0.57 Fe 3+ 1.33 Mg 0.10 ) O 10 (OH) 2 Na + 0.40
9
Ferruginous smectite SWa-1 NIRMIR 2.29 4361 + Fe 3+ 2 OH 12.2 820 Fe 3+ 2 OH Wavelength (µm)
10
Ferruginous smectite SWa-1 NIRMIR AlAl 4563 2.24 4464 + AlFe 3+ OH AlFe 3+ OH 11.4 875 Wavelength (µm)
11
Ferruginous smectite SWa-1 AlAl 4563 AlAl 920 2.19 4563 + Al 2 OH 4563 10.87 920 Al 2 OH NIRMIR Wavelength (µm)
12
OH Fundamental vibrations OH combination OH OH overtones (µm) (cm -1 ) _ MIR NIRUV Vis Far IR OH OH OH SiO SiO 110004000400 0.92.525 H2OH2OH2OH2O H2OH2O H2OH2OH2OH2O 2W OH >> W 2 OH X = 1/2W 2 OH - W OH = -85.6 cm -1 Petit et al. (2004) Phys. Chem. Minerals, 31, 585-592. X : anharmonicity constant
13
Wavenumber (cm -1 ) 4600 4350 4100 2.17 2.30 2.44 Wavelength (µm) SWa-1 2.24 4464 2.29 4361 Reflectance Reflects different conditions of formation NIR is most often not self – sufficient but it could help AlFeOH Fe 2 OH (Al 2 OH)
14
Requirements: - minimize the variables of the system - reproducibility - homogeneous and definite chemical composition Use an amorphous gel with the clay stoechiometry
15
Basic reaction : silica source: SiO 2 Na 2 O metal source: salt (chloride, nitrate…) equilibrated agent: HCl, NaOH, ….. Ex: nontronite 4 SiO 2 Na 2 O + 2 FeCl 3 + 2 HCl 8 NaCl + H 2 O + Si 4 Fe 2 O 11 beidellite 4 SiO 2 Na 2 O + 2 AlCl 3 +2 HCl 8 NaCl + H 2 O + Si 4 Al 2 O 11 Coprecipitation of gel with the clay stoechiometry Decarreau (1983) ’s protocol
16
The coprecipitate is: - centrifuged and washed - dried and crushed (or frieze dried) The starting material is ready to use.
17
Aim: Reproduce in laboratory clay formation Clays similar to clays formed at the earth surface are synthesized by hydrothermal treatment at T <= 250°C (at equilibrium water P) From kaolinite syntheses performed at several temperatures (180-300°C), Rayner [1962] calculated a half-reaction time of 16.10 4 years at 20°C. Problem: we cannot use geological times ! The rate constant of an heterogeneous chemical reaction in aqueous phase is given by : k = A.exp - ( E/RT) Ageing time of clay synthesis can be minimized by an increase of T.
18
< 100°C : PFA reactors (copolymer of ethylene tetrafluor) From 100 to 240°C : reactors with metal bodies and removable Teflon liners Starting material (300-500 mg) + distilled water (30 cc) (+ HCl or NaOH) Teflon Metal
19
(Theoretical) Fe 3+ - nontronite (Si (4-x) Fe 3+ x ) Fe 3+ 2 O 10 (OH) 2 M + x nontronite
20
Starting from Fe 2+ : 2 SiO 2 Na 2 O + FeCl 2 Si 2 FeNa 2 O 6 + 2 NaCl after drying the gel, iron is oxidized pH is adjusted to 12.5 with NaOH ageing time 4 weeks T = 75, 90, 100, 125, 150 °C * *aegirine (Na Fe 3+ Si 2 O 6 ) is obtained at higher temperatures (Decarreau et al. Eur. J. Mineral. 16, 85-90, 2004) (Decarreau et al. Clays&Clay Min. 322-337, 2008)
21
T (°C) 150 125 110 100 90 75 gel 00102-11 00413-20 06-33 15-24-31 Si 3.25 Fe 3+ 0.75 Fe 3+ 2 O 10 (OH) 2 Na + 0.75 (Decarreau et al. Clays&Clay Min. 322-337, 2008)
22
5198 6975 20 25 30 35 40 45 50 55 60 65 %Réflectance (Offset) 4500 5000 5500 6000 6500 7000 7500 Wavenumber (cm-1) Wavelength (µm) 2.29 1.43 1.92 4373 2 Fe 3+ 2 OH H2OH2O Fe 3+ 2 OH H2OH2O fresh gel starting gel nontronite 2.414144 ?
23
100°C 110°C 125°C 150°C 75°C 90°C 60 64 68 72 76 80 5000 6000 7000 Wavenumber (cm-1) + Fe 3+ 2 OH2 Fe 3+ 2 OH H2OH2O H2OH2O ? %Reflectance (offset) 6982 520443734144 1.43 Wavelength (µm) 1.92 2.29 2.41 1.47 6800
24
- Well crystallized nontronite can be synthesized under either oxidizing or partially reducing conditions. - the range of synthesis pH is narrow (12 to 12.5) - at lower pH hematite or hisingerite are formed - at higher pH and for temperatures >180°C aegirine is formed Thermodynamic equilibrium diagram of aegirine with 2:1 phyllosilicates with the following structural formula: Si (4-x) Fe 3+ x Fe 3+ 2 O 10 (OH) 2 Na + x after Decarreau et al. (2004) Eur. J. Mineral., 85-90.
25
(Theoretical) (Si (4-x) Al, Fe 3+ x ) Fe 3+ 2 O 10 (OH) 2 M + x IV VI Fe 3+ - nontronite (Si (4-x) Fe 3+ x ) Fe 3+ 2 O 10 (OH) 2 M + x nontronite (Si (4-x) Al x ) (Al, Fe 3+ ) 2 O 10 (OH) 2 M + x Beidellite
26
Starting gel Al/FeFe 3+ /Fe 2+ T (°C)pH f result 0.2/1.8Fe 3+ 150°C10.82nontronite 170°C10.81nontronite 200°C10.68nontronite 220°C10.28nontronite + zeolite Fe 2+ 150°C11nontronite + zeolite 170°C10.78nontronite + zeolite 200°C10.66nontronite + zeolite 0.4/1.6Fe 3+ 170°C10.12hisingerite 200°C10.23hisingerite 220°C10.23hisingerite Fe 2+ 170°C11.59nontronite + zeolite 200°C11.27nontronite + zeolite 10.71nontronite 220°C10.81zeolite +nontronite
27
3 13 23 33 43 53 63 6000 5000 4000 3000 2000 1000 Position (°2Theta) Cuk Counts 15.9 Å 4.52 Å 3.64 Å 2.58 Å 1.528 Å XRD powder pattern 1.919 Å 2.29 4373 2.22 4510 1.91 5224 1.43 6980 40 45 50 55 60 65 70 75 80 85 90 95 100 % Reflectance 4500 5000 5500 6000 6500 7000 7500 Wavenumber (cm-1) Wavelength (µm) 1.46 6833 2 Fe 3+ 2 OH H2OH2O H2OH2O + Fe 3+ 2 OH
28
Starting gel Al/FeFe 3+ /Fe 2+ T (°C)pH f result 1/1Fe 2+ 200°C11.51nontronite + zeolite 10.39Al-nontronite 6.73Fe 3+ -beidellite 1.8/0.2Fe 3+ 220°C10.38beidellite + zeolite Fe 2+ 220°C9.34beidellite 7.30beidellite + zeolite 4.99kaolinite 7.67beidellite + kaolinite
30
1.8Al0.2Fe 0.2Al1.8Fe 0.4Al1.6Fe 1Al1Fe pHi=6.3, pHf=6.7 2Fe 1Al1Fe pHi=8.4, pHf=10.4 4200 4400 4600 4800 Wavenumber (cm-1) % Reflectance (Offset) 4462 Wavelength (µm) 4566 4373 2.29 2.24 2.19 + Fe 3+ 2 OH + Al 2 OH + AlFe 3+ OH
31
- nontronite can crystallize under partially reducing or oxidizing conditions if available water, Si, Fe and alkaline pH without biology and organic acids - poorly crystalline nontronite can be obtained for days at low temperature - however, the pH conditions range is narrow - the range increases when Al increases (same with Mg) - pH conditions hardly control crystal-chemistry of synthesized clays - high T are not convenient for nontronite - nontronite/zeolite paragenesis may correspond to the same geochemical conditions What is the «stability » of nontronite (or hingerite) under rather acidic atmosphere ? (no H + activity ?)
32
YESTERDAY topic (Identification of phyllosilicates) - poorly crystalline nontronite give the same NIR signal than well crystallized one (width of the OH combination band does not decrease significantly) - doublet (or triplet) in the 2.2 µm region does not necessarily reflect the presence of several minerals (… and is the mystery of the doublet at 2.2 and 2.28 µm solved? ) - NIR alone is most often not enough to characterize muti-component samples unambiguously
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.