Download presentation
Presentation is loading. Please wait.
1
Spurious Eigensolutions and Fictitious Frequencies for Acoustic Problems with the Mixed-type Boundary Conditions by using BEM 邊界元素法於混合型邊界條件問題之 假根及虛擬頻率探討 國立台灣海洋大學河工二館 307 教室 中華民國九十二年七月十五日 研 究 生: 林宗衛 指導老師: 陳正宗教授
2
海洋大學力學聲響振動實驗室 Outlines Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research 02 Techniques and treatments
3
海洋大學力學聲響振動實驗室 Outlines Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research 03 Techniques and treatments
4
海洋大學力學聲響振動實驗室 Motivation 04 DirichletNeumannMixed-type spurious Eigenvalue fictitious frequency spurious Eigenvalue fictitious frequency spurious Eigenvalue fictitious frequency Complex-valued BEM NYNY?? Real-part BEM Y-Y-?? Imaginary-part BEM Y-Y-?? MRM Y-Y-??
5
海洋大學力學聲響振動實驗室 Outlines 05 Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research 05 Techniques and treatments
6
海洋大學力學聲響振動實驗室 Governing equation where D : the domain of interest k : the wave number x : the domain point u(x): the acoustic potential 06
7
海洋大學力學聲響振動實驗室 Types of boundary conditions Mixed-type u=u NeumannDirichlet t= =u 07
8
海洋大學力學聲響振動實驗室 The null-field integral formulations D DcDc 8 D DcDc
9
海洋大學力學聲響振動實驗室 D c : the complementary domain of D, x,s: the field and source point, u(s): the potential on the boundary t(s): the normal derivative of potential on the boundary U (s,x): the kernel function, T(s,x) M(s,x) L (s,x) 9
10
海洋大學力學聲響振動實驗室 U (s,x) kernel in different methods Complex-valued BEM: Real-part BEM: Imaginary-part BEM: MRM: 10
11
海洋大學力學聲響振動實驗室 Discretization (singular formulation) 11
12
海洋大學力學聲響振動實驗室 Rearrangement of the influences matrices 12
13
海洋大學力學聲響振動實驗室 Discretization (hypersingular formulation) 13
14
海洋大學力學聲響振動實驗室 Outlines 14 Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research Techniques and treatments
15
海洋大學力學聲響振動實驗室 k t : the true eigenvalues 15 Extraction of the true eigensolutions by using SVD updating terms
16
海洋大學力學聲響振動實驗室 Detection of the spurious eigensolutions by using SVD updating documents by using the Fredhohm ’ s alternative theorem 16 T: transpose ks: the spurious eigenvalues
17
海洋大學力學聲響振動實驗室 Burton & Miller method [ikU(s, x)+L(s, x)]u(s) = [ikT(s, x)+M(s, x)]t(s) +) 17
18
海洋大學力學聲響振動實驗室 CHIEF method 18
19
海洋大學力學聲響振動實驗室 Outlines 19 Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research Techniques and treatments
20
海洋大學力學聲響振動實驗室 Interior problems 20
21
海洋大學力學聲響振動實驗室 A finite rod s 0 =0 x x 0 1 s 1 =1 Type I : u(0)=0; t(1)=0 Type II: t(0)=0; u(1)=0 21 B.C.:
22
海洋大學力學聲響振動實驗室 Comparison of the eigenfuctions Interior problem Dirichlet u(0)=0, u(1)=0 Neumann t(0)=0, t(1)=0 Mixed-type (u(0)=0, t(1)=0) TrueSpuriousTrueSpuriousTrueSpurious Complex – valued BEM UT Sink- -Cosk- LM Sink- -Cosk- Real-part BEM UT Sink CoskSink LM Sink CoskSink Imaginary-part BEM UT Sink CoskSink LM Sink CoskSink 22
23
海洋大學力學聲響振動實驗室 23 Real-part BEM Imaginary-part BEM Complex-valued BEM T T T T T T T T T T T T S S S S S S
24
海洋大學力學聲響振動實驗室 A circular cavity u 2 =0t 1 =0 R=1 m 24 Elements: N=30
25
海洋大學力學聲響振動實驗室 Detection the eigenvalues using the complex-valued BEM 25
26
海洋大學力學聲響振動實驗室 True Spurious Updating term Updating document Detection of true and spurious eigenvalues using the real-part BEM 26
27
海洋大學力學聲響振動實驗室 Detection of true and spurious eigenvalues using the real-part BEM True Spurious Updating term Updating document 27
28
海洋大學力學聲響振動實驗室 The comparison of the spurious eigenvalues with different B.C. Neumann or DirichletMixed-typed 28
29
海洋大學力學聲響振動實驗室 The spurious eigenvalues using different methods Complex- valued BEM Real-part BEM Imaginary-part BEM MRM Singular formulation - Hyperingular formulation - where 29
30
海洋大學力學聲響振動實驗室 The comparison for the former five eigenmodes Real –part BEM FEM 30
31
海洋大學力學聲響振動實驗室 The comparison for the former five eigenvalues k1k1 k2k2 k3k3 k4k4 k5k5 Real –part BEM 1.2222.5442.9543.8024.231 FEM ( ABAQUS ) 1.2542.5932.9343.8424.194 31
32
海洋大學力學聲響振動實驗室 Exterior problems 32
33
海洋大學力學聲響振動實驗室 A semi-infinite rod s 0 =1 x 0 1 s1=s1= 33 B.C.: mt(1)+u(1)=n
34
海洋大學力學聲響振動實驗室 Comparison of the fictitious frequencies Interior problem Dirichlet u(1)=0 Neumann t (1)=0 Mixed-type mt(1)+u(1)=n Fictitious eigenfunctions T(s,x 0 )=0 UT cosk LM sink U(s,x 0 )=0 UT sink LM cosk 34
35
海洋大學力學聲響振動實驗室 T(s,x)=0U(s,x)=0 35 The fictitious frequency of 1-D problem
36
海洋大學力學聲響振動實驗室 A circular radiator 36 R=1 m Elements: N=30
37
海洋大學力學聲響振動實驗室 The positions of irregular for u(1,0) and their treatments x 37
38
海洋大學力學聲響振動實驗室 The positions of irregular for t(1, p ) and their treatments x 38
39
海洋大學力學聲響振動實驗室 Comparison of the BEM and exact solutions for radiation problem BEM solutionAnalytical solution 39
40
海洋大學力學聲響振動實驗室 Outlines 40 Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research Techniques and treatments
41
海洋大學力學聲響振動實驗室 The null-field integral formulations 41
42
海洋大學力學聲響振動實驗室 Semi-analytical approach 42
43
海洋大學力學聲響振動實驗室 43 Real-part BEM Imaginary-part BEM Complex-valued BEM Interior problem
44
海洋大學力學聲響振動實驗室 44 Exterior problem Singular Formulation Hypersingular Formulation
45
海洋大學力學聲響振動實驗室 Outlines 45 Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research Techniques and treatments
46
海洋大學力學聲響振動實驗室 Conclusions The results in the numerical experiment match well with those in our semi-analytical results. The eigensolutions and fictitious frequencies were solved successfully by using semi-analytical approach and BEMs 46
47
海洋大學力學聲響振動實驗室 Conclusions The spurious eigenvalues and fictitious frequencies depend on the representation no matter what the given types of B.C. for the problem are specified. 47
48
海洋大學力學聲響振動實驗室 Outlines 48 Motivation Boundary integral equations Examples Conclusions Semi-analytical approach Further research Techniques and treatments
49
海洋大學力學聲響振動實驗室 Further research 49 It will be interesting to know that if spurious eigenvalues and fictitious frequencies locate at the zeros of the Mathieu functions in the shape of ellipse. The quantity of the fictitious frequencies depend on the modal participation factor.
50
海洋大學力學聲響振動實驗室 Further research 50 To derive the fictitious frequencies analytically by using the complex-valued BEM for mixed-type boundary condition problem. The extension to multiple radiators & scatters and half-plane problems using the similar algorithm can be conducted to examine the occurrence of the fictitious frequencies.
51
海洋大學力學聲響振動實驗室 Further research 51 The extension to 3-D problems deserves further study to reconfirm the conclusion proposed in the thesis.
52
海洋大學力學聲響振動實驗室 報告完畢 敬請指教 52
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.