Download presentation
Presentation is loading. Please wait.
1
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg
2
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann2 Overview Historicity –Proof-based geometry –Algorithmic geometry –Axiomatic geometry Computational geometry today Problems and applications Geometrical objects –Points –Lines –Surfaces Analyses and techniques
3
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann3 Geometric Objects
4
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann4 Areas of Nearest Neighbours Where is the nearest Starbucks?
5
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann5 Art Gallery Problem How many stationary guards are needed?
6
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann6 Watchman Route What is the optimal route for a mobile guard to take?
7
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann7 Visibility Problems Which surfaces should be visible on screen? Scene Spatial-objects Screen-surface Deeper in the scene Closer to the screen-surface
8
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann8 Intersection Problems Where do lines/rectangles/polygons… intersect? Given a set of line segments, Rectangles, polygons, etc. Compute all pairs of intersecting objects
9
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann9 Algorithms Involving Points (2D) Minimum spanning tree (MST) Delaunay triangulation Convex hull
10
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann10 Voronoi Region
11
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann11 Voronoi Diagram
12
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann12 Geometric Search Which is the closest pair of coordinates? Is it possible to close the gap between (n log n) and O(n²)? Asymptotic bounds are relevant!
13
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann13 Runtime Efficiency Comparisons n n log n n² 2 10 10³ 10 2 10 10 4 2 20 10 6 2 20 10 6 20 2 20 2 10 7 2 40 10 12 Interactive Processing n log n algorithms n² algorithms n = 1000 yes ? n = 1000000 ? no Computational geometry has developed new types of algorithms which may solve basic geometric problems efficiently.
14
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann14 Application Domains Computer graphics: 2- and 3-dimensional Robotics, CAD, CAM VLSI design Database systems, GIS Molecular modelling,....
15
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann15 Geographical Information Systems UNI-Offspring Arc-*-Software Documentation, analysis, and maintenance of gas, water and sewage pipes and telecommunications lines
16
Computational Geometry, WS 2007/08 Prof. Dr. Thomas Ottmann16 Robotics Laserscan robot Localisation and path-finding in unknown environments. Example of an On-line scenario of geometrical algorithms
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.