Download presentation
Presentation is loading. Please wait.
1
Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS III / QUDAL Feb. 2006, Eilat, Israel
2
in collaboration with: Mikhail Lukin (Harvard) Eugene Polzik (Kopenhagen) Anders Sørensen (Kopenhagen) QUACS
3
quantum networks |>|> photons as information carrieratoms for storage and processing
4
atom-light interfaces: EIT scheme (t) probe Fleischhauer, Lukin, PRL 2000; PRA 2002 Phillips et al. PRL 2001, Kuzmich et al. Nature 2005 Eisaman et al. Nature 2005 quasi-particle picture ? Faraday scheme probe Julsgaard, Sherson, Cirac, Fiurášek, Polzik, Nature 2004 Sørenson, Mølmer, … quant-ph/0505170, … continuous variable picture
5
outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme
6
outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme
7
outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme
8
outline:outline: perfect single-mode quantum memory Faraday scheme off-resonant Raman scheme EIT scheme
9
perfect single-mode memory: perfect single-mode memory: light modeatomic ensemble XP X P LL A A map of ideal q-memory: M symplectic 2 x 2 matrices i
10
bi-linear Hamiltonian: assume:
11
solution of Heisenberg equation: if determinant is nonzero (=1):
12
generic Hamiltonians for ideal mapping (T) = / 2
13
Faraday rotation: microscopic Hamiltonian Julsgaard, Sherson, Cirac, Fiurášek, Polzik, Nature 2004 Sørenson, Mølmer et al. quant-ph/0505170 strong coherent field with linear polarization in x direction i.e. x = + and - atoms are spin polarized in x direction, i.e. (|1> + |2>)/ 2 z x y
14
Stokes parameters of polarization state of light Spins of atomic ensemble „macroscopic“ Hamiltonian constant of motion
15
x – pol. coherent input light initial atomic polarization „macroscopic“ Hamiltonian = | | / 2 x 2 non-ideal Hamiltonian mapping
16
single-pass Faraday scheme: unitary evolution for time t requires atomic spin squeezing requires perfect detection & feedbeack L measurement of light component X x and momentum displacement –x/t of atoms (feedback) Julsgaard et.al, Nature 2004
17
Gaussian state fidelity of single-pass scheme: non-Gaussian states ( = 0) coherent spin and light state, pefect detector ( =0), F ≤ 82 % coh. spin state (CSS)
18
double-pass Faraday scheme: 1. unitary evolution with H for t requires either atomic spin squeezing but no feedback Sherson et al. quant-ph/0505170 1 2. unitary evolution with H for t´ 2 tt´= 1 or perfect detection & feedback but no squeezing
19
triple-pass Faraday scheme: ideal mapping w/o squeezing and feedback operator identity
20
EIT scheme: Fleischhauer, Lukin, PRL 2000; PRA 2002; Phillips et al. PRL 2001, Kuzmich et al. Nature 2005; Eisaman et al. Nature 2005 dynamically controllable group velocity 2 3
21
„stopping“ of light:
22
Autler-Townes splitting quasi-particle picture of EIT: large small
23
dark & bright-state polaritons: in adiabatic limit:
24
collective spin light-stopping = adiabatic rotation of DSP: E spin
25
polariton excitations: |n |S = -N/2 |0 |S = -N/2 + n = 0 = /2 polariton rotation: = ph at
26
time-dependent : perfect mapping Hamiltonian effective Hamiltonian of dynamical EIT:
27
off-resonant Raman scheme: drive-field + polarized atoms z- polarized g / = g ´ / ´ Faraday scheme S 22 zz
28
choose perfect mapping Hamiltonian drive-field + polarized atoms z- polarized
29
summary:summary: perfect single-mode quantum memory single-pass Faraday scheme + squeezing and feedback double-pass Faraday scheme + squeezing or feedback triple-pass Farday scheme EIT scheme
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.