Download presentation
Presentation is loading. Please wait.
1
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 16 1 1 1 2 2 2 3 3 3 4 3 55 6 6 8 8 9 6 PROBLEM: How to get from A to B Many Paths Each with a Different Value to the Decision Maker Each Segment Changing with Uncertainty over Time Addressing the Real-time Aspects In Turn-by-turn Navigation 4
2
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Link Travel Times Historic, Actual & Forecast During Day One week-day on one link Things change!
3
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 The Measurement Problem How to collect the real time Speed Data? –Incremental Infrastructure In pavement loop detectors (single point) radar/laser/video signpost systems (single point) EZ Pass readers (2 point span measurement, Excellent) –Processing “Existing” Data Wireless Location Technology (Cellular Probes, see Fontaine, et al) –Cell-tower trilateration »Yet to demonstrate sufficient accuracy –Cell-handoff processing »maybe OK for simple networks Floating Car (Vehicle Probe) data processing (see Demers et al)
4
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Cell Probe Technology Practical success requires more than cell phones Cell phone movement based on cell location and “hand-offs” from one cell to another Pattern recognition techniques filter out data from those not on the highway Then traffic algorithms generate travel times and speeds on roadway links Cell phones need to be turned on, but not necessarily in use Full regional systems in place in Baltimore, Antwerp, and Tel Aviv = 4,600 miles, Shanghai
5
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Cell Probe Technology
6
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Cell Probe Privacy
7
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, part 1
8
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, part 2
9
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, part 3
10
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, part 4
11
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, part 5
12
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, part6
13
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, full trip
14
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Handset 49, full trip
15
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Path-Finding Drive Tests
16
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Baltimore MMTIS Provides first regional deployment of commercial- quality cellular traffic probes in North America Mutually profitable public-private partnership –Test commercial markets during project –Integrate with existing public data – including transit and E-911 –Encourage public applications beyond traditional ITS Contract signed September 2004; data flow to Maryland DOT began April 2005
17
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Baltimore MMTIS – Private Firms Delcan-NET –Transportation and technology consultants –Fifty plus years in business –Profitable every year; staff = 500 plus ITIS Holdings –Leader in traffic probes; staff = 100 –Commercial customers – 16 automobile firms, for-profit 511 –Profitable! –Publicly traded on London exchange National cellular firms
18
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8
19
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 MARYLAND DOT CAMERAS SHOW ACCURACY OF TRAFFIC INFORMATION BEING CAPTURED USING CELL PROBES I-695 at HARTFORD ROAD Monday, June 6 th 2005 9:02:18 am
20
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 I-695 at HARTFORD ROAD Monday, June 6 th 2005 9:33:06 am CELL PROBES ACCURATELY UPDATE TRAFFIC CONDITIONS AS CHANGES OCCUR
21
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Produced by Dr Hillel Bar Gerd, Associate Professor, Ben Gurion Negev University, Israel
22
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Baltimore Comparison with RTMS Data
23
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Analysis Route Overview
24
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Performance data I-695 – July 2005
25
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Baltimore I-695 Weekday Patterns
26
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Baltimore I-695 Saturday Patterns
27
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Baltimore I-695 Route Travel Time
28
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8
29
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8
30
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8
31
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Vehicle Probes Assign Speed data to network segments of Digital Map database, or Maintain travel times between strategically located virtual monuments
32
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 North American Monument Network ~ 125,000 North American “Monuments” ~10 6 (m i, m j ) Can create Median travel Tims by Time-of-Day – For Example: AM Peak, Midday, PM Peak, Night, Weekend day (mi, mj) near Troy (mi, mj) larger area
33
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Median Speed (by direction) on National Highway Network 1:30pm 11/14/07 > 40 mph < 40 mph 1:30pm 11/14/07 height ~ speed
34
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Average Speed (by direction) on National Highway Network 1:30pm 11/14/07 > 40 mph < 40 mph 1:30pm 11/14/07 height ~ speed
35
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Real-Time Dynamic Minimum ETA Sat/Nav 250 Volunteers using CoPilot|Live commuting to/from RPI CoPilot continuously shares real-time probe-based traffic data CoPilot continuously seeks a minimum ETA route “Advance” project Illinois Universities Transportation Research Consortium The late 90s Conducted its version of the abandoned “ADVANCE” ( Advanced Driver and Vehicle Advisory Navigation ConcEpt ) project & Won ITS America’s 2007 “Best Innovative Research” Award
36
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Project Objectives Create: real-time data collection from vehicles and dissemination to vehicles of congestion avoidance information which is used to automatically reroute drivers onto the fastest paths to their destinations Target locations: small to medium-sized urban areas Aspects: operations, observability, controllability, users, information transfer to travelers
37
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 3-month field test Capital District (Albany), NY, USA Journey-to-work 200 participants 80 Tech Park employees 120 HVCC staff & students “Techy” travelers Network: Freeways & signalized arterials Congested links Path choices exist Experiment Details
38
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Basic Operational Architecture Two-way cellular data communications between Customized Live|Server at ALK Customized CoPilot|Live In vehicles 6 Destinati on 1 2, 4 3 5 7 8
39
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Every Second CoPilot|Live Determines “Where am I”, Then… CoPilot|Live “Where Am I”, Then… ALK Server Updates: TT(m i, m j ) If Momument, m j, is passed Send m i, m j, tt k (m i, m j )= t(m i ) - t(m i ) (52 bytes) Set i=j
40
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Every “n” Minutes ALK Server Builds: set U k Sends: TT(m i, m j ) for every (i,j) in U k CoPilot|Live … Send… Current Location & Destination, Last update time (42 bytes) ALK Server … Send… New TT(m i, m j ) for every (i,j) in U k (280 bytes/100arcs) CoPilot|Live … Updates TT(m i, m j ) in U k, ETA on current route, Finds new MinETA route, if MinETA “substantially” better then… Adopt new route ALK Server … Determines U k : set of TT(m i, m j ) within “bounding polygon” of (Location;Destination) k that have changed more than “y%” since last update. CoPilot|Live Sends: “Where am I”, Dest., Last update Receives/Posts: updates Computes: MinETA Updates route, if better
41
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 When Available ALK Server … Receives: Other congestion information from various source, blends them in TT(m i, m j ) ALK Server Updates: TT(m i, m j )
42
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 What We Heard I find it interesting how willing I am to listen to a machine tell me which route to take I like using it for when I have no idea on how to get somewhere, and it is good for my normal route because it keeps me out of traffic on route 4. It is great, it took a while to trust it telling me where to go, but i like it because i cant get lost! Thanks. This thing is awesome. I was a little skeptical at first but once i got the hang of it I don’t know how I went along without it. I think any student commuting to school will benefit from this. I'm very impressed with the CoPilot program thus far. The directions are accurate and it adapts quickly to route changes.
43
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 1 2 3 also Can Watch Vehicles
44
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Forecasting Travel Times Using Exponential Smoothig
45
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Historical Expectation: Concepts Patterns Differ over Days & Time of Day Most Significant Difference is Between Weekdays and Weekends Zoo Interchange – Hale Interchange (All Days)
46
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Historical Expectation: Concepts Two Peak Periods Each appears to be Bell Shaped Afternoon Peak Period Appears to have “Extra Hump”
47
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Historical Expectation: Solution
48
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Historical Expectation: Application Minimize the SSE between Historical Estimation Function and actual data points Downtown – Zoo Interchange
49
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Historical Expectation: Application
50
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Using Real-Time Information to Improve our Estimate
51
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Including Real-Time Information: Concepts Real-Time Information “Since a desirable route needs to be given when the driver asks for it, but the computation of such a route requires travel times which occur later, we need to be able to forecast such travel times.” DEFINITION: A real-time travel time is a data point that can be received or constructed and measures the time it takes to traverse a specific route from one location to another location ending now.
52
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Including Real-Time Information: Concepts Peak Hour Characteristics & Return to Normalcy During Peak Hours, Traffic Patterns Remain at a relatively constant distance to Historical Estimate There will be a time at which traffic patterns will return to free flow conditions Moorland - Downtown Burleigh - Zoo
53
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Method of “smoothing” a time series of observations Most recent observations are given a high weight and previous observations are given lower weights that decrease exponentially with the age of the observation Including Real-Time Information: Concepts Exponential Smoothing Single Double Triple
54
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Including Real-Time Information: Solution During Peak Periods: Adaptation of Double Exponential Smoothing Trend is the Trend of the Historical Estimate Observation weighted with Most Recent Estimate + Slope for Smoothed Estimate Forecast done by adding trend to most recent estimate
55
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Including Real-Time Information: Solution During Non-Peak Periods Adaptation of Double Exponential Smoothing Trend is decay to free flow Conditions
56
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Including Real-Time Information: Solution Burleigh – Zoo (June 14)
57
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 Including Real-Time Information: Application
58
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
59
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
60
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
61
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
62
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
63
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
64
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
65
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
66
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
67
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
68
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
69
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
70
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
71
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
72
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
73
Orf 467 – Transportation Systems Analysis Fall 2007/8 11/9/2007Week 8 THETA0.3000 Time Step0:03:00 PHE0.8000 CAI0.5000 C0.85 Progression Through Sample Day: Moorland – DowntownJune 14, 2002
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.