Presentation is loading. Please wait.

Presentation is loading. Please wait.

Purpose of this talk Ronald Griessen ACTS workshop May 24, 2007 Diffusion.

Similar presentations


Presentation on theme: "Purpose of this talk Ronald Griessen ACTS workshop May 24, 2007 Diffusion."— Presentation transcript:

1 Purpose of this talk Ronald Griessen ACTS workshop May 24, 2007 Diffusion

2 Water droplet

3 Wave equation Waves

4 Diffusion

5 Fick’s law Equation of continuity dx J C(x,t)

6 is a solution of Singularities decay immediately

7 Diffusion in semi-infinite space

8 Front at concentration c=10 -20 m -1 The velocity of light is reached at t = 5  10 -25 s if D=10 -8 m 2 /s. The jump time is, however, with a=0.1 nm Infinite diffusion :a little numerical exercise

9 Diffusion into a membrane of thickness L

10 Hydrogen near a metal surface, for example Pd

11 H in Nb Diffusion coefficients of various interstitials

12

13 Pd Cu Y Pd

14 Cu

15 Pd Cu Pd Cu

16 Pd Cu Y Pd Cu Y

17 Pd Cu Y Pd Cu Y

18 Pd Cu Pd Cu Pd Y

19 Cu Fast H diffusion in bcc Pd-Cu Y

20 Cu atomic percent palladium Temperature o C

21 Diffusion coefficients of various interstitials

22 Fick’s law Equation of continuity dx ? Is this true ?

23 P-c isotherms and phase diagram

24 Fick’s law Equation of continuity dx ?

25 A real diffusion experiment

26 Kooij et al. 1999 Pressure-composition isotherm of YH x at T=293 K

27 Hydrogenography in Yttrium Den Broeder, van der Molen et al, Nature 394 (1998) 656 Y Y2O3Y2O3 Pd H

28 1 H/Y 0 2 3  hcp- insulator  hcp- metal  

29 1 H/Y 0 2 3  hcp- insulator  hcp- metal  

30

31 This picture demonstrates that instead of

32 Influence of the chemical factor

33 Y2O3Y2O3 Pd Y SiO 2 H V Switchable mirrors as indicators

34 SiO 2 VV Sample architecture

35 Pd 10 nm Y 50 nm SiO 2 VV Sample architecture

36 H Pd Y SiO 2 VV x x=0 Hydrogen loading

37 d V 25 nm 50 nm 75 nm 100 nm 125 nm 10 mm Pd YH 2 front x=0 x H-loading: 473K, 1mbar, 3h

38 Diffusion in a multilayer The chemical potential MUST be continuous The concentration MAY have discontinuities

39 Usual diffusion Real diffusion ?

40 Particles in a lattice gas X

41 Usual diffusion Real diffusion However, the chemical potential MUST be continuous

42 Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-10;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2

43 Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-0;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2

44 Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-0;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2

45 Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-15;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2

46 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Rb Sr Y Zr Nb Mo Tc Ru RhPd Ag Cd Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Heat of solution of metal-hydrides

47 Ni Ti Ni Ti Mg

48 Ni Ti Ni Ti Mg c = c(x,t)c H = f(t)

49 Ni Ti Ni Ti c = c(x,t)c H = f(t) Mg Fast loading, Very slow unloading Relatively slow loading, Very fast unloading

50 Ni-Mg bilayer c = c(x,t)c H = f(t)  =  (x,t) Fast loading, Very slow unloading

51 Ti-Mg bilayer Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-15;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2 c = c(x,t)c H = f(t)  =  (x,t) Relatively slow loading, Very fast unloading

52 Diffusion and Snell’s law

53

54 Random walk of a photon With v the velocity of light  a the absorption coefficient

55 SoSo The aquarium experiment

56 O’Leary et al., Phys. Rev. Lett. 69 (1992) 2658

57 SiO 2 Pd 10 nm V 50 nm V 250 nm Y 50 nm Sample architecture

58 YH 2 YH 3 Pd 32 min 1 bar 373 K V 50 nm V 250 nm Hydrogen loading

59 YH 2 YH 3 Pd 110 min 1 bar 373 K

60 YH 2 YH 3 Pd 216 min 1 bar 373 K

61 YH 2 YH 3 Pd 442 min 1 bar 373 K

62 2’32’55’110’216’332’442’90’ Time evolution of contours

63 Ray tracing along the phase – gradient at small angles A.Remhof, R. J. Wijngaarden, and B.R. Griessen, Refraction and reflection of diffusion fronts, C.Phys. Rev. Lett., 90 (2003) 145502 Snell’s law for diffusion !

64 Electromigration

65 In presence of an electric field

66 Usual diffusion Real electro-diffusion

67 Electromigration Electric field ONElectric field OFF

68 Electromigration of H in V Electric field ONElectric field OFF

69 Electromigration Den Broeder, van der Molen et al. Nature 394 (1998) 656 Pd Y Y2O3Y2O3 H H

70 Electro-diffusion of hydrogen in yttrium Den Broeder, van der Molen et al. Nature 394 (1998) 656 Pd Y Y2O3Y2O3 j=0 j=20 mA j=40 mA + _ H behaves like a negative ion H H

71


Download ppt "Purpose of this talk Ronald Griessen ACTS workshop May 24, 2007 Diffusion."

Similar presentations


Ads by Google