Download presentation
Presentation is loading. Please wait.
1
Purpose of this talk Ronald Griessen ACTS workshop May 24, 2007 Diffusion
2
Water droplet
3
Wave equation Waves
4
Diffusion
5
Fick’s law Equation of continuity dx J C(x,t)
6
is a solution of Singularities decay immediately
7
Diffusion in semi-infinite space
8
Front at concentration c=10 -20 m -1 The velocity of light is reached at t = 5 10 -25 s if D=10 -8 m 2 /s. The jump time is, however, with a=0.1 nm Infinite diffusion :a little numerical exercise
9
Diffusion into a membrane of thickness L
10
Hydrogen near a metal surface, for example Pd
11
H in Nb Diffusion coefficients of various interstitials
13
Pd Cu Y Pd
14
Cu
15
Pd Cu Pd Cu
16
Pd Cu Y Pd Cu Y
17
Pd Cu Y Pd Cu Y
18
Pd Cu Pd Cu Pd Y
19
Cu Fast H diffusion in bcc Pd-Cu Y
20
Cu atomic percent palladium Temperature o C
21
Diffusion coefficients of various interstitials
22
Fick’s law Equation of continuity dx ? Is this true ?
23
P-c isotherms and phase diagram
24
Fick’s law Equation of continuity dx ?
25
A real diffusion experiment
26
Kooij et al. 1999 Pressure-composition isotherm of YH x at T=293 K
27
Hydrogenography in Yttrium Den Broeder, van der Molen et al, Nature 394 (1998) 656 Y Y2O3Y2O3 Pd H
28
1 H/Y 0 2 3 hcp- insulator hcp- metal
29
1 H/Y 0 2 3 hcp- insulator hcp- metal
31
This picture demonstrates that instead of
32
Influence of the chemical factor
33
Y2O3Y2O3 Pd Y SiO 2 H V Switchable mirrors as indicators
34
SiO 2 VV Sample architecture
35
Pd 10 nm Y 50 nm SiO 2 VV Sample architecture
36
H Pd Y SiO 2 VV x x=0 Hydrogen loading
37
d V 25 nm 50 nm 75 nm 100 nm 125 nm 10 mm Pd YH 2 front x=0 x H-loading: 473K, 1mbar, 3h
38
Diffusion in a multilayer The chemical potential MUST be continuous The concentration MAY have discontinuities
39
Usual diffusion Real diffusion ?
40
Particles in a lattice gas X
41
Usual diffusion Real diffusion However, the chemical potential MUST be continuous
42
Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-10;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2
43
Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-0;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2
44
Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-0;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2
45
Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-15;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2
46
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Rb Sr Y Zr Nb Mo Tc Ru RhPd Ag Cd Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Heat of solution of metal-hydrides
47
Ni Ti Ni Ti Mg
48
Ni Ti Ni Ti Mg c = c(x,t)c H = f(t)
49
Ni Ti Ni Ti c = c(x,t)c H = f(t) Mg Fast loading, Very slow unloading Relatively slow loading, Very fast unloading
50
Ni-Mg bilayer c = c(x,t)c H = f(t) = (x,t) Fast loading, Very slow unloading
51
Ti-Mg bilayer Ds_1=0.1;%surface layer diffusion coefficient Ds_2=0.1; Ds=Ds_1; D1=0.1;%Ni NB 1 equals 10-5 cm^2/sc D2=0.1;%0.1Mg2Ni e1=-15;%0 Ni e2=-10;% -18Mg2Ni stmu_1=-2;% -5applied mu at top boundary START VALUE stmu_2=-20;% -5applied mu at top boundary ALTERNATIVE VALUE sizex=50; %sample length sizey=1; %DO NOT CHANGE this simulation is 1D t_surf=10;%thickness of surface layer trans=35;%position of boundary between two halfs must be >t_surf+2 c = c(x,t)c H = f(t) = (x,t) Relatively slow loading, Very fast unloading
52
Diffusion and Snell’s law
54
Random walk of a photon With v the velocity of light a the absorption coefficient
55
SoSo The aquarium experiment
56
O’Leary et al., Phys. Rev. Lett. 69 (1992) 2658
57
SiO 2 Pd 10 nm V 50 nm V 250 nm Y 50 nm Sample architecture
58
YH 2 YH 3 Pd 32 min 1 bar 373 K V 50 nm V 250 nm Hydrogen loading
59
YH 2 YH 3 Pd 110 min 1 bar 373 K
60
YH 2 YH 3 Pd 216 min 1 bar 373 K
61
YH 2 YH 3 Pd 442 min 1 bar 373 K
62
2’32’55’110’216’332’442’90’ Time evolution of contours
63
Ray tracing along the phase – gradient at small angles A.Remhof, R. J. Wijngaarden, and B.R. Griessen, Refraction and reflection of diffusion fronts, C.Phys. Rev. Lett., 90 (2003) 145502 Snell’s law for diffusion !
64
Electromigration
65
In presence of an electric field
66
Usual diffusion Real electro-diffusion
67
Electromigration Electric field ONElectric field OFF
68
Electromigration of H in V Electric field ONElectric field OFF
69
Electromigration Den Broeder, van der Molen et al. Nature 394 (1998) 656 Pd Y Y2O3Y2O3 H H
70
Electro-diffusion of hydrogen in yttrium Den Broeder, van der Molen et al. Nature 394 (1998) 656 Pd Y Y2O3Y2O3 j=0 j=20 mA j=40 mA + _ H behaves like a negative ion H H
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.