Download presentation
Presentation is loading. Please wait.
1
The Art of Counting David M. Bressoud Macalester College St. Paul, MN BAMA, April 12, 2006 This Power Point presentation can be downloaded from www.macalester.edu/~bressoud/talks
2
1.Review of binomial coefficients & Pascal’s triangle 2.Slicing cheese 3.A problem inspired by Charles Dodgson (aka Lewis Carroll)
3
Building the next value from the previous values
4
Choose 2 of them Given 5 objects How many ways can this be done?
5
Choose 2 of them Given 5 objects How many ways can this be done? ABCDE AB, AC, AD, AE BC, BD, BE, CD, CE, DE
6
Choose 2 of them Given 5 objects How many ways can this be done? ABCDE AB, AC, AD, AE BC, BD, BE, CD, CE, DE
7
+
8
+ +++ +++ ++ +
9
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 “Pascal’s” triangle Published 1654
10
“Pascal’s” triangle from Siyuan yujian by Zhu Shihjie, 1303 CE Dates to Jia Xian circa 1100 CE, possibly earlier in Baghdad-Cairo or in India.
11
How many regions do we get if we cut space by 6 planes? George Pólya (1887–1985) Let Us Teach Guessing Math Assoc of America, 1965
14
How many regions do we get if we cut space by 6 planes? 0 planes: 1 region 1 plane: 2 regions 2 planes: 4 regions 3 planes: 8 regions
15
How many regions do we get if we cut space by 6 planes? 0 planes: 1 region 1 plane: 2 regions 2 planes: 4 regions 3 planes: 8 regions 4 planes: 15 regions
16
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7
17
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 124124
18
1 2 3 4 5 6 7
19
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 12471247
20
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 12471247
22
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 1 2 4 7 11
24
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 1 2 4 7 11 16 22
25
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 1 2 4 7 11 16 22 Cut space by planes 1 2 4 8
27
4th plane cuts each of the previous 3 planes on a line
28
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 1 2 4 7 11 16 22 Cut space by planes 1 2 4 8 15
29
5th plane cuts each of the previous 4 planes on a line
30
Cut a line by points 0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 Cut a plane by lines 1 2 4 7 11 16 22 Cut space by planes 1 2 4 8 15 26 ??
31
1 1 1 1 2 2 2 1 1 3 4 4 1 2 1 4 7 8 1 3 3 1 5 11 15 1 4 6 4 1 6 16 26 1 5 10 10 5 1 7 22 42 1 6 15 20 15 6 1 line by points plane by lines space by planes
32
line by points plane by lines space by planes 1 1 1 1 2 2 2 1 1 3 4 4 1 2 1 4 7 8 1 3 3 1 5 11 15 1 4 6 4 1 6 16 26 1 5 10 10 5 1 7 22 42 1 6 15 20 15 6 1
33
line by points plane by lines space by planes 1 1 1 1 2 2 2 1 1 3 4 4 1 2 1 4 7 8 1 3 3 1 5 11 15 1 4 6 4 1 6 16 26 1 5 10 10 5 1 7 22 42 1 6 15 20 15 6 1
34
line by points plane by lines space by planes 1 1 1 1 2 2 2 1 1 3 4 4 1 2 1 4 7 8 1 3 3 1 5 11 15 1 4 6 4 1 6 16 26 1 5 10 10 5 1 7 22 42 1 6 15 20 15 6 1
35
Number of regions created when space is cut by k planes:
36
Can we make sense of this formula? What formula gives us the number of finite regions? What happens in higher dimensional space and what does that mean?
37
Charles L. Dodgson aka Lewis Carroll “Condensation of Determinants,” Proceedings of the Royal Society, London 1866
38
Bill Mills Dave Robbins Howard Rumsey Institute for Defense Analysis
39
Alternating Sign Matrix: Every row sums to 1 Every column sums to 1 Non-zero entries alternate in sign
40
A 5 = 429 Alternating Sign Matrix: Every row sums to 1 Every column sums to 1 Non-zero entries alternate in sign
42
Monotone Triangle
44
12345 1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5
45
1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 3
46
1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 322432542
47
1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 3 14 22432542
48
12345 1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 3 14723142623714 7 22432542
49
12345 1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 3 147 105 23142623714 7 22432542
50
12345 1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 3 147 4210513510542 23142623714 7 22432542
51
12345 1234 1235 1245 1345 2345 123 124 125 134 135 145 234 235 345 12 13 14 15 23 24 25 34 35 45 1 2 3 4 5 3 147 4210513510542 429 23142623714 7 22432542
52
A 5 = 429 A 10 = 129, 534, 272, 700
53
A 5 = 429 A 10 = 129, 534, 272, 700 A 20 = 1436038934715538200913155682637051204376827212 = 1.43… 10 45
54
n123456789n123456789 A n 1 2 7 42 429 7436 218348 10850216 911835460 = 2 3 7 = 3 11 13 = 2 2 11 13 2 = 2 2 13 2 17 19 = 2 3 13 17 2 19 2 = 2 2 5 17 2 19 3 23
55
n123456789n123456789 A n 1 2 7 42 429 7436 218348 10850216 911835460 = 2 3 7 = 3 11 13 = 2 2 11 13 2 = 2 2 13 2 17 19 = 2 3 13 17 2 19 2 = 2 2 5 17 2 19 3 23
56
1 2 3 2 7 14 14 7 42 105 135 105 42 429 1287 2002 2002 1287 429 1 2 7 42 429 7436
57
1 2 3 2 7 14 14 7 42 105 135 105 42 429 1287 2002 2002 1287 429 +++
58
1 2 3 2 7 14 14 7 42 105 135 105 42 429 1287 2002 2002 1287 429 +++ 1 1 3 1 2 5 1 2 4 5 1 2 3 4 5
59
1 1 2/2 1 2 2/3 3 3/2 2 7 2/4 14 14 4/2 7 42 2/5 105 135 105 5/2 42 429 2/6 1287 2002 2002 1287 6/2 429
60
1 1 2/2 1 2 2/3 3 3/2 2 7 2/4 14 5/5 14 4/2 7 42 2/5 105 7/9 135 9/7 105 5/2 42 429 2/6 1287 9/14 2002 16/16 2002 14/9 1287 6/2 429
61
2/2 2/3 3/2 2/4 5/5 4/2 2/5 7/9 9/7 5/2 2/6 9/14 16/16 14/9 6/2
62
1+1 1+1 1+2 1+1 2+3 1+3 1+1 3+4 3+6 1+4 1+1 4+5 6+10 4+10 1+5 Numerators:
63
1+1 1+1 1+2 1+1 2+3 1+3 1+1 3+4 3+6 1+4 1+1 4+5 6+10 4+10 1+5 Conjecture 1: Numerators:
64
Conjecture 1: Conjecture 2 (corollary of Conjecture 1): For derivation, go to www.macalester.edu/~bressoud/talks
65
Richard Stanley, M.I.T. George Andrews, Penn State
66
length width n ≥ L 1 > W 1 ≥ L 2 > W 2 ≥ L 3 > W 3 ≥ … 1979, Andrews’ Theorem: the number of descending plane partitions of size n is
67
How many ways can we stack 75 boxes into a corner? Percy A. MacMahon
68
How many ways can we stack 75 boxes into a corner? Percy A. MacMahon # of pp’s of 75 = pp(75) = 37,745,732,428,153
69
+ q + 3q 2 + 6q 3 + 13q 4 + …
70
Generating function:
71
For derivation, go to www.macalester.edu/ ~bressoud/talks A little algebra turns this generating function into a recursive formula:
72
Totally Symmetric Self-Complementary Plane Partitions
74
Robbins’ Conjecture: The number of TSSCPP’s in a 2n X 2n X 2n box is
75
1989: William Doran shows equivalent to counting lattice paths 1990: John Stembridge represents the counting function as a Pfaffian (built on insights of Gordon and Okada) 1992: George Andrews evaluates the Pfaffian, proves Robbins’ Conjecture
76
1996 Zeilberger publishes “Proof of the Alternating Sign Matrix Conjecture,” Elect. J. of Combinatorics Doron Zeilberger, Rutgers
77
1996 Kuperberg announces a simple proof “Another proof of the alternating sign matrix conjecture,” International Mathematics Research Notices Greg Kuperberg UC Davis Physicists have been studying ASM’s for decades, only they call them square ice (aka the six-vertex model ).
78
1996 Zeilberger uses this determinant to prove the original conjecture “Proof of the refined alternating sign matrix conjecture,” New York Journal of Mathematics
79
The End (which is really just the beginning) This Power Point presentation can be downloaded from www.macalester.edu/~bressoud/talks
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.