Download presentation
Presentation is loading. Please wait.
1
EECS 20 Lecture 16 (February 26, 2001) Tom Henzinger Determinization
2
State machines Deterministic Output-deterministic Nondeterministic X X
3
A state machine is deterministic iff 1.there is only one initial state, and 2.for every state and every input, there is only one successor state. Hence, for every input signal there is exactly one run.
4
A state machine is output-deterministic iff 1.there is only one initial state, and 2.for every state and every input-output pair, there is only one successor state. Hence, for every behavior there is exactly one run.
5
State machines Deterministic Output-deterministic Nondeterministic Simulations can be found easily
6
If M2 is a deterministic state machine, then M1 is simulated by M2 iff M1 is equivalent to M2. “if and only if” M1 refines M2, and M2 refines M1
7
If M2 is an output-deterministic state machine, then M1 is simulated by M2 iff M1 refines M2.
8
If M2 is a nondeterministic state machine, then M1 is simulated by M2 implies M1 refines M2.
9
Fortunately: For every nondeterministic state machine M, we can find an output-deterministic state machine det(M) that is equivalent to M. ( This is called “subset construction.” )
10
Then, to check if M1 refines M2, check if M1 is simulated by det(M2): M1 refines M2 iff M1 refines det(M2) iff M1 is simulated by det(M2).
11
Then, to check if M1 refines M2, check if M1 is simulated by det(M2): M1 refines M2 iff M1 refines det(M2) iff M1 is simulated by det(M2). output-deterministic
12
The Subset Construction Given: nondeterministic state machine M Find: output-deterministic state machine det(M) that is equivalent to M
13
The Subset Construction Given: nondeterministic state machine M Find: output-deterministic state machine det(M) that is equivalent to M Inputs [det(M)] = Inputs [M] Outputs [det(M)] = Outputs [M]
14
The Subset Construction Let initialState [ det(M) ] = possibleInitialStates [M] ; Let States [ det(M) ] = { initialState [det(M)] } ; Repeat as long as new transitions can be added to det(M) : Choose P States [det(M)] and (x,y) Inputs Outputs ; Let Q = { q States [M] | p P, (q,y) possibleUpdates [M] (p,x) } ; If Q Ø then Let States [det(M)] = States [det(M)] {Q} ; Let update [det(M)] (P,x) = (Q,y).
15
x / y p {p} q1 q2 M det(M)
16
x / y p {p} q1 q2 {q1,q2} M det(M)
17
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 det(M)
18
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 {a} det(M)
19
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 {a} det(M) 0 / 0
20
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 0
21
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 0
22
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 01 / 1 0 / 0
23
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 0 {b} 0 / 1 1 / 1 0 / 0
24
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 0 {b} 0 / 1 1 / 0 1 / 1 0 / 0
25
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 0 {b} 0 / 1 0 / 1 1 / 0 1 / 1 0 / 0
26
1 / 1 a b M 0 / 0 1 / 1 0 / 1 1 / 0 1 / 1 {a} {a,b} det(M) 0 / 0 {b} 0 / 1 1 / 0 1 / 1 0 / 0
27
M det(M) a b / 0 / 1 c d / 0
28
M det(M) a b / 0 / 1 c d / 0 {a,c}
29
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0
30
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1
31
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1 / 0
32
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1 / 0 {b} / 1
33
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1 / 0 {b} / 1
34
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1 / 0 {b} / 1
35
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1 / 0 {b} / 1 {d} / 0
36
M det(M) a b / 0 / 1 c d / 0 {a,c} {a,d} / 0 {b,c} / 1 / 0 {b} / 1 {d} / 0
37
For a given reactive system S: 1.If there is a nondeterministic state machine that implements S with n states, then there is an output- deterministic state machine that implements S with 2 n states. [Subset construction] 2. There may not be an output-deterministic state machine that implements S with fewer than 2 n states. [Homework 5, Problem C] 3. There may not be a unique nondeterministic state machine that implements S with the fewest states.
38
/ / 0 / / 0 / 1 / 0 / / 0 / / 0 / 1 equivalent but not isomorphic to
39
So what does minimization do for nondeterministic state machines ?
40
The Nondeterministic Minimization Algorithm Input : nondeterministic state machine M Output : minimize (M), the state machine with the fewest states that is bisimilar to M (the result is unique up to renaming of states)
41
A binary relation B States [M1] States [M2] is a bisimulation between M1 and M2 iff A1. p possibleInitialStates [M1], q possibleInitialStates [M2], ( p, q ) B, and A2. p States [M1], q States [M2], if ( p, q ) B, then x Inputs, y Outputs, p’ States [M1], if ( p’, y ) possibleUpdates [M1] ( p, x ) then q’ States [M2], ( q’, y ) possibleUpdates [M2] ( q, x ) and ( p’, q’ ) B, and
42
B1. q possibleInitialStates [M2], p possibleInitialStates [M1], ( p, q ) B, and B2. p States [M1], q States [M2], if ( p, q ) B, then x Inputs, y Outputs, q’ States [M2], if ( q’, y ) possibleUpdates [M2] ( q, x ) then p’ States [M1], ( p’, y ) possibleUpdates [M1] ( q, x ) and ( p’, q’ ) B. and
43
p q p’ x / y B
44
p q p’ x / y q’ x / y B
45
p q p’ x / y q’ x / y B
46
p q p’ x / y q’ x / y B q’’ x / y X
47
p q p’ x / y q’ x / y B q’’
48
For deterministic state machines M1 and M2, M1 is equivalent to M2 M1 and M2 are bisimilar.
49
For nondeterministic state machines M1 and M2, M1 is equivalent to M2 M1 and M2 are bisimilar. X
50
States The Nondeterministic Minimization Algorithm
51
1/01/01/01/0 1/01/0 1/01/0 1/01/0 1/01/0 1/01/0 1/01/0 1/01/0 X X X X X
53
1/01/0 1/01/0 1/01/01/01/0 X
55
0/10/1 0/10/1 0/10/1 X
57
1. Let Q be set of all reachable states of M. 2. Maintain a set P of state sets: Initially let P = { Q }. Repeat until no longer possible: split P. 3. When done, every state set in P represents a single state of the smallest nondeterministic state machine bisimilar to M. The Nondeterministic Minimization Algorithm
58
Split P If there exist two state sets R P and R’ P two states r1 R and r2 R an input x Inputs an output y Outputs such that r’ R’, ( r’, y ) possibleUpdates ( r1, x ) and r’ R’, ( r’, y ) possibleUpdates ( r2, x ) then let R1 = { r R | r’ R’, ( r’, y ) possibleUpdates ( r, x ) } ; let R2 = R \ R1 ; let P = ( P \ { R } ) { R1, R2 }.
59
Split R’ R x / y r1 r2 X
60
Split R’ R x / y r1 r2 X
61
/0/0 /0/0 /0/0 /0/0 /0/0 /0/0 /1/1 /1/1 a e d c b M
62
/0/0 /0/0 /0/0 /0/0 /0/0 /0/0 /1/1 /1/1 a e d c b M
63
/0/0 /0/0 /0/0 /0/0 /0/0 /0/0 /1/1 /1/1 a e d c b M /1/1 /1/1 X
64
/0/0 /0/0 /0/0 /0/0 /0/0 /0/0 /1/1 /1/1 a e d c b M /0/0 /0/0 X
65
/0/0 /0/0 /0/0 /0/0 /0/0 /0/0 /1/1 /1/1 a e d c b M /1/1 /1/1 X
66
/0/0 /0/0 /0/0 /1/1 /1/1 a e d Minimal state machine bisimilar to M b,c
67
/0/0 /1/1 /1/1 a Minimal state machine equivalent to M (in general, this is difficult to find) b,c /0/0 d,e
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.