Download presentation
Presentation is loading. Please wait.
2
Multiple server queues In particular, we look at M/M/k Need to find steady state probabilities
3
M/M/k (k > 1) n =, for n = 0, 1, 2,..... n = n , for n = 1, 2,..., k = k , for n = k, k+1,... kk 0 k+1 21 kk-1k-2 (k-1) ... 3 Rate Diagram
4
M/M/k (cont.) State Rate In = Rate Out 0 P 1 = P 0 12 P 2 + P 0 = ( + ) P 1 23 P 3 + P 1 = ( + 2 ) P 2....................... k-1 k P k + P k-2 = { + (k-1) } P k-1 k k P k+1 + P k-1 = ( + k ) P k k+1 k P k+2 + P k = ( + k ) P k+1.......................
5
M/M/k (cont.) Now, solve for P 1, P 2, P 3... in terms of P 0 P 1 = ( / ) P 0 P 2 = ( / 2 ) P 1 = (1/2!) ( / ) 2 P 0 P 3 = ( / 3 ) P 2 = (1/3!) ( / ) 3 P 0......... P k = (1/k!) ( / ) k P 0 P k+1 = (1/k) ( / ) P k =
6
M/M/k (cont.) if 0 n k if k n If < k
7
M/M/k (cont.) Now solve for N q : Note, = / k
8
M/M/k (cont.) W = N q / (W: avg waiting time in Q) R = W + 1 / (R: avg waiting time in sys.) N = (W+ 1/ ) (N: avg # in the system) = N q + /
9
Particular case : M/M/2 = / 2 P 0 = (1- (1+ P n = 2 n (1- (1+ n 1 W = N q / R = W + 1 / N = N q + /
10
Comparison of M/M/1 and M/M/2 2 counters. 2 types of jobs (internal and external). Exponential service time, avg 3 minutes. Internal: Poisson arrivals, 18 per hour External: Poisson arrivals, 15 per hour
11
Particular case : M/M/ ore servers than there are jobs ·Poisson distribution with parameter ( if 0 n k
12
Performance of M/M/ For M/M/1: Same results also hold for M/G/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.