Download presentation
Presentation is loading. Please wait.
1
Pemodelan Kuantitatif Mat & Stat Pertemuan 3: Mata kuliah:K0194-Pemodelan Matematika Tahun:2008
2
Learning Outcomes Mahasiswa dapat memahami pemodelan kuantitaif yang ada di bidang Matematika danStatistika..
3
Outline Materi: Pengertian Model Matematika & Statistika Sistem Modelling Dynamic model Matrix model Stochastic model Multivariate model Optimization model
4
PEMODELAN KUANTITATIF : MATEMATIKA DAN STATISTIKA MODEL STATISTIKA: FENOMENA STOKASTIK MODEL MATEMATIKA: FENOMENA DETERMINISTIK
5
DYNAMIC MODEL MODELLING Dynamics SIMULATION Language Equations Computer General Special DYNAMO CSMP CSSL DYNAMO CSMP CSSL BASIC FORMAL ANALYSIS
6
DYNAMIC MODEL (2) DIAGRAMS RELATIONAL SYMBOLS RATE EQUATIONS LEVELS PARAMETER INFORMATION FLOW SINK AUXILIARY VARIABLES MATERIAL FLOW
7
DYNAMIC MODEL: (3) ORIGINS Computers Equations Other functions Steps Discriminant Function Undestanding Simulation Abstraction Hypothesis Logistic Exponentials
8
MATRIX MODEL MATHEMATICS Operations Matrices Types Eigen value Elements Square Rectangular Diagonal Identity Vectors Dominant Eigen vector Scalars Row Column Row Column Additions Substraction Multiplication Inversion Additions Substraction Multiplication Inversion
9
MATRIX MODEL (2) DEVELOPMENT Interactions Groups Development stages Stochastic Size Materials cycles Markov Models
10
STOCHASTIC MODEL STOCHASTIC Probabilities History Stability Other Models Statistical method Dynamics
11
STOCHASTIC MODEL (2) Spatial patern Distribution Example Binomial Pisson Poisson Negative Binomial Others Negative Binomial Fitting Test
12
STOCHASTIC MODEL (3) ADDITIVE MODELS Basic Model Example Parameter Error Estimates Block Treatments Analysis Effects Orthogonal Experimental Significance Variance
13
STOCHASTIC MODEL (4) REGRESSION Model Example Linear/ Non- linear functions Error Decomposition Assumptions Equation Reactions Oxygen uptake Experimental Empirical base Theoritical base
14
STOCHASTIC MODEL (5) MARKOV Example Assumptions Transition probabilities Analysis Disadvantage Raised mire Advantages Analysis
15
MULTIVARIATE MODELS(1) METHODS Variable Classification Independent Dependent Descriptive Predictive VARIATE Principal Component Analysis Cluster Analysis Reciprocal averaging Canonical Analysis Discriminant Analysis
16
MULTIVARIATE MODEL (2) PRINCIPLE COMPONENT ANALYSIS Example Correlation Organism Environment Eigenvalues Regions Objectives Requirement Eigenvectors
17
MULTIVARIATE MODEL (3) CLUSTER ANALYSIS Example Spanning tree Rainfall regimes Demography Minimum Settlement patern Multivariate space Similarity Distance Single linkage
18
MULTIVARIATE MODEL (4) CANONICAL CORRELATION Example Correlation Urban area Watershed Partitioned Irrigation regions Eigenvalues Eigenvectors
19
MULTIVARIATE MODEL (5) Discriminant Function Example Discriminant Vehicles Villages Calculation Structures Test
20
OPTIMIZATION MODEL OPTIMIZATION Meanings Indirect Minimization Simulation Objective function Maximization Linear Experimentation Constraints Solution Examples Non- Linear Dynamic Optimum Transportation Routes Optimum irrigation scheme Optimum Regional Spacing Optimum Transportation Routes Optimum irrigation scheme Optimum Regional Spacing
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.