Download presentation
Presentation is loading. Please wait.
1
Environmental Change and Altered Marine Food Webs cont. Altered Marine Food Webs cont. 1)Ozone Hole I.coastal Antactica (what is a problem?) can we solve anything? 2)Eutrophication I.Easy Interpretation? II. Easy answers? Point and nonpoint 3) Past Big changes? Oscar Schofield (oscar@ahab.rutgers.edu)
2
OZONE HOLE
3
0 4 8 12 33035005254565 0 0.4 0.8 1.2 1.6 Growth Rate (day -1 ) Production Production (mg C mg chl a -1 h -1 ) Julian Day stratification advection stratification
4
0 0.4 0.8 1.2 1.6 345365254565 0 2000 4000 6000 8000 10000 12000 Chlorophyll a ( g m -3 ) Julian Day Growth Rate (day -1 )
5
1992 1993 Large Scales Processes Antarctic Ozone Hole 100 200 300 230240250260270280290300310 Sept 1Oct 1Nov 2 220 Ozone (DU, Ozone (DU, ) In the Ozone Hole Sampling a single point in Time: How do you place a process in context?
9
0 0.002 0.004 0.006 0.008 0.01 0.012 260310360410460510560610660710 UVBUVAPAR wavelength (nm) Absorption spectrum for Antarctic Ice Algae a ph ( m 2 mg chl a -1 )
11
[ ] 0 200 400 600 800 6:0010:0014:0018:0022:00 Local Time Q PAR = 4. I k Q PAR =I k Light ( mol m -2 s -1 )
12
-20 0 20 40 60 0.080.060.040.020 % UVB Inhibition of P PAR by UVB O m 5 m >5 m (Ein m -2 ) Smith et al., 1992 Science
13
60 50 40 30 20 10 0 330350015030045060 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Station B at Palmer Station Antarctica 1991-1992 Depth (m)
14
PAR Light-Harvesting Pigments RC IIRC I e - QAQA QBQB 2H + PQH 2 2H + Fd CO 2 CH 2 O P680 + z 2H 2 O O 2 + 4H + Fluorescence
15
F m F m all RCII closed, probability of fluorescence is high F t F t some RCII closed, probability of fluorescence is variable darkness bright light flash medium light levels F m - F o = F v F O F O all RCII open, probability of fluorescence is low
17
Impact of UV-radiation on the quantum yield of stable charge separations at photosystem II in Antarctic ice algae Antarctic ice algae Impact of UV-radiation on the quantum yield of stable charge separations at photosystem II in Antarctic ice algae Antarctic ice algae 0 0.2 0.4 0.6 6:0010:0018:00 14:00 Local Daylight Time UVB + UVA + PAR UVA + PAR PAR IIe o
18
Potential Photosystem II activity for Antarctica ice algae on 10/01/1993 Local Daylight Time 0 1000 2000 6:008:0010:0016:0018:00 14:0012:00 20:00 PAR PAR + UVA PAR + UVA + UVB Time-integrated charge separations at PS II separations at PS II
19
RCII Pheo QaQb e-e-e-e- Light- Harvesting Complexes IIe o Ka + Kb PSII none 5-10% UVB inhibition inhibition 23% UVB inhibition inhibition UVB radiation PARPAR
20
Euthrophication
21
Eutrophication Point sources: sewage pipes, you can close the one point. Human Population centers Non point sources: Watershed, atmosphere, etc.
22
Warsh – NOAA 1989 12 m 15 m 20 m 25 m 30 m 35 m 40 m 50 m 100 m 500 m 1000m 2500m Hypoxia/Anoxia & Bottom Bathymetry
23
Modeled Effect of Bathymetric Variability on Upwelling 1 m/s current velocity wind North Along shore subsurface deltas cause upwelling to be 3d, not 2d. Barnegat delta Cape May delta LEO delta
24
93 94 95 96 97 98 99 00 01 Temperature ( o C) 4 2 1 3 0 Glenn et al. Biogeochemistry of Upwelling in Mid-Atlantic Bight JGR submitted Chang et al. JGR 10.1029/2001JC001018. Chl a 1.2 mg m -3 40N Temp ( o C) 15 16 17 19 21 22 23 39N 0.5 mg m -3 75W 74W 73W Physical Forcing of Hypoxia in Mid-Atlantic Bight
25
Courtesy of Hans Graber, Rich Garvine, Bob Chant, Andreas Munchow, Scott Glenn and Mike Crowley
26
40N 74W75W 39N Temperature o C 19 20 21 22 24 July 6, ’98 - AVHRR Field Station LEO 40N 74W 75W 39N Field Station Chlor-a (mg/m 3 ).1.3.5 1 2 4 July 11, ‘98 - SeaWiFS LEO Barnegat Cape May New Jersey Coastal Upwelling Historical Hypoxia/Anoxia
27
Depth (m) 1 3 5 7 9 12 0 12 24 36 48 60 Time (hr) Absorption at 440 nm (m -1 ) 1.0 0.8 0.6 0.4 0.2 0 Tidal cycle Upwelling 0 5 10 15 20 25 199319941995199619971998199920002001 Total Upwelling Area (100 x km 2 ) Area Days 20 40 60 0 A) Days of Upwelling 0 1 2 3 4 00.250.50.7511.25 POC (mg L -1 ) beam c (m -1 ) n=113 r 2 =0.852 y = 3.19±0.12x + 0.431±0.04 0 500 1000 1500 2000 2500 Bottom O 2 Variance (mmol kg -1 ) J F M A M J J A S O N D Month Variance of SST 0 2 4 6 8 Inshore Offshore Upwelling can account for the historical patterns of hypoxia along the NJ shore
28
Sybil Seitzinger John Harrison (Post-doc) Anthropogenic Activities Hydrology Effects on Coastal Ecosystems N, P, Si dissolved inorganic dissolved organic particulate GLOBAL NEWS Spatially Explicit Global Models Of Nutrient Export To Coastal Systems Average DIN yield by watershed (kg N/km 2 /yr) MODEL INPUTS Nitrogen Fertilizer Use in 1990 kg N km -2 y -1 Bouwman et al. 1995; FAO statistics NO y Atmospheric Deposition in 1990 kg N km -2 y -1 Dentener and Crutzen, 1994 OTHER INPUTS: Slope Soil C:N P Fertilizer Human Population Animal Manure Etc. MODEL OUTPUT Funding Sources: UNESCO-IOC NSF NOAA SEAGRANT
29
Model Calculation of NO 3 Export by Rivers NO 3 Export = f ( Human Sewage, Fertilizer Use, Atmos. Dep. ) [0.4 x Water Runoff 0.8 ] x [Fert Use + Atmos. Dep.] ) ( Modified from Caraco and Cote 1999; Seitzinger and Kroeze 1998) ( NO 3 Export = 0.7 x Human x 1.85 kg N Population person -1 yr -1 x Fraction urban +
30
Total N Fertilizer (kg/N/km^2/yr) 0 1 - 530 531 - 931 932 - 2151 2152 - 2672 2673 - 3133 3134 - 4664 4665 - 5138 5139 - 5795 5796 - 40023 Model Input N Fertilizer Use (kg N/km^2/yr) Atmospheric Deposition (NOy) (kg N/km^2/Yr) NOy (kg N/km^2/Yr) 56 - 135 136 - 198 199 - 252 253 - 304 305 - 342 343 - 382 383 - 439 440 - 512 513 - 651 652 - 902 Pop Density (indiv/km^2/ws) 0 - 3 4 - 18 19 - 29 30 - 42 43 -59 60 - 83 84 - 103 104 - 138 139 - 237 238 - 965 Population Density (individual/km^2) Data Sources: Vorosmarty et al 2003 RIVM Dentener, pers. comm. STN Model Predicted Runoff (mm/yr) Mean Runoff (mm/yr) 0 1 - 63 64 - 145 146 - 185 186 - 247 248 - 304 305 - 420 421 - 541 542 - 699 700 - 2095
31
Modeled vs Measured DIN Export by Mediterranean Rivers Rhone Ebro Axios Po Segura Pinios AdigeVar Arno Data: European Envir. Agency
32
DIN Export from Watersheds (kg N *10E6/basin/yr)
33
Chlorophyll a from SeaWiFS (mg/m 3 ) 2002
34
DIN Export vs Coastal Chl a for 6 Sub-regions of the Mediterranean
35
BIG CHANGES IN THE PAST?
36
Delwiche, C.F. (1999) Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 154: 5164-77.
37
Phytoplankton in the geological record PALEOZOIC MESOZOIC CENOZOIC Carbon. Permian Triassic Jurassic Cretaceous Tertiary Dinoflagellates Diatoms Prymnesiophytes Prasinophytes & Chlorophytes Green lineage Red lineage Species diversity/abundance (relative scale) ?
38
Elemental composition of phytoplankton C 106 N 16 P 1.In 1934, Alfred Redfield recognized that there is a remarkable similarity between the N:P ratio in the organic matter of plankton and the corresponding ratio of NO 3 - and PO 4 3- in seawater: C 106 N 16 P 1. N:P ratio > or < than 16 is used as an indicator of nitrogen or phosphate limitation. Macronutrients
39
Trace metal quotas (mmol/ mol P)
40
Mean size of diatom community
42
R = 0.74 Sea level and the size of diatoms
43
A potential climatic feedback: The evolution of large diatoms in a Hothouse world Increase the efficiency of the biological pump Small cells decrease efficiency of biological pump Radiation of small diatoms in response to reduced shelf area and low CO 2 Drawdown of CO 2 and climatic cooling, and decreased shelf area Decreased drawdown of CO 2, warming
44
(from N.Gruber) Monthly mean sea level at San Francisco (1855-1990) Annual averages of sea level at Venice and Trieste (1875-1980)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.