Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford.

Similar presentations


Presentation on theme: "Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford."— Presentation transcript:

1 Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford Linear Accelerator Laboratory

2 Sean Grullon – TeVPA 20092 Overview Astrophysical Neutrinos & Searching for a Diffuse Flux of Muon Neutrinos Muon Energy Estimation 22 String Diffuse Analysis Results Outlook for 40 Strings Questions & Discussion

3 Sean Grullon – TeVPA 20093 Neutrinos as Cosmic Messengers Neutrinos help answer many questions in astrophysics: What are the sources of highest energy cosmic rays? Are there pp and p  interactions at the source? Can neutrino production be linked to TeV  sources, GRBs, AGN? Can a superposition of faint neutrino sources cause a detectable signal?

4 Sean Grullon – TeVPA 20094 IceTop InIce Air shower detector threshold ~ 300 TeV 80-86 Strings, 60 Optical Modules per String 2004-2005 : 1 String 2005-2006: 8 Strings AMANDA 19 Strings 677 Modules first data 2005 upgoing muon 18. July 2005 2006-2007: 13 Strings 2007-2008: 18 Strings

5 Sean Grullon – TeVPA 20095 Astrophysical (signal) Atmospheric Atmospheric  Cosmic ray 

6 Sean Grullon – TeVPA 20096 Downgoing Muon Rejection Apply quality cuts on Data, Corsika MC, and Atmospheric Neutrino MC

7 Sean Grullon – TeVPA 20097 Analysis Strategy Find an excess of extra-terrestrial neutrinos (E -2 ) over atmospheric neutrinos (E -3.7 ) at the high-energy tail of an energy distribution

8 Sean Grullon – TeVPA 20098 Diffuse Analysis Strategy Find an excess of astrophysical neutrinos (E -2 ) over atmospheric neutrinos (E -3.7 ) at the high-energy tail of an energy distribution

9 Sean Grullon – TeVPA 20099 Energy Estimation Convert what is measured, Cherenkov light, to an estimate of the Muon energy. Simplest estimation: Number of Triggered Optical Modules (NCh) More Sophisticated: Muon Energy Loss (dE/dX) e+e-e+e-    pair-creation bremsstrahlung photo-nuclear

10 Sean Grullon – TeVPA 200910 Reconstructing The Muon energy loss Approximate as: dusty clean deep shallow Incorporate Ice Properties: Formulate LLH:

11 Sean Grullon – TeVPA 200911 Muon Energy Correlation – 40 Strings dE/dX reco more linearly correlated with Muon energy dE/dX Reco NChannel

12 Sean Grullon – TeVPA 200912 Energy Resolution – 40 Strings Width 0.27 Width 0.43 dE/dX reco has narrower energy resolution

13 Sean Grullon – TeVPA 200913 Energy Resolution as a Function of Muon Energy – 40 Strings

14 Sean Grullon – TeVPA 200914 The dE/dX distribution of IC22 275.7 days LiveTime Keep Energy Cut > 1.4 Background above cut = 4.1 Events Observed Data above cut = 4.0 Events Sensitivity: 2.5 x10 -7 GeV cm -2 s -1 sr -1 Find cut that minimizes average upper limit

15 Sean Grullon – TeVPA 200915 The dE/dX distribution of IC40 300 days LiveTime - MC Only

16 Sean Grullon – TeVPA 200916 Likelihood Analysis Method Likelihood - product over bin-by-bin Poisson probabilities: Events observed in bin i Events expected in bin i Conventional Atmospheric νAstrophysical νPrompt ν

17 Sean Grullon – TeVPA 200917 Fitting Example: 1 Year IC40 - No Astrophysical or Prompt ν “Data” Poisson sampled from 1 year of Atm. ν MC

18 Sean Grullon – TeVPA 200918 Allowed Regions, No Astrophysical or Prompt ν : 1 Year of IC40 Preliminary IC40 Diffuse Sensitivity: E 2 < 1.1 x 10 -8 GeV cm -2 s -1 sr -1 No Systematics included

19 Sean Grullon – TeVPA 200919 Models & Limits IC22 IC40 WB

20 Sean Grullon – TeVPA 200920 Models & Limits, cont.

21 Sean Grullon – TeVPA 200921 Summary A reliable log-likelihood reconstruction of the muon energy loss is now available for IceCube analyses. The IC22 sensitivity is E 2 = 1.4 275.7 days of IC22 data were analyzed and compared with the Bartol + naumov RQPM atmospheric neutrino simulation. No data excess over the atmospheric neutrino prediction observed above the dE/dX cut. The IC40 analysis uses a likelihood method giving a preliminary sensitivity of E 2 < 1.1 x 10 -8 GeV cm -2 s -1 sr -1 and the incorporation of systematic errors is currently underway.

22 Sean Grullon – TeVPA 200922 Backup slides

23 Sean Grullon – TeVPA 200923 IC22 Sensitivity Estimator Energy cut Sensitivity x 10 -7 Bartol+Naumov RQPM (Bartol only) 1e-7 E -2 MC data log 10 (dEdX)>=1.4 0.25 (0.21) 4.1 (2.45) 19.84 Data is consistent with the atmospheric neutrino models Simple energy estimators (no energy reconstruction) Estimator Energy cut Sensitivity x 10 -7 Bartol+Naumov RQPM 1e-7 E -2 MC data NCh>=990.229.324.222 log10(NPe)>=3.150.266.622.510 * numbers in parenthesis are calculated without the prompt neutrino model

24 Sean Grullon – TeVPA 200924 Systematics – IC22 Observed data exceeds MC by a factor of 2 in deep ice Deep Ice 40% clearer. AMANDA depth New from IceCube DataAtms. Nu MC Single Mu Coinc. Mu

25 Sean Grullon – TeVPA 200925 DataAtms. Nu MC Systematic Test (low energy, NCh<50) COGZ Data - MC upgoing cos(zenith) horizon COGZ Data excess is observed even with the low energy events (conventional atmospheric neutrinos) Divide the detector in 2 depths : upper half and lower half

26 Sean Grullon – TeVPA 200926 Systematic Test Estimator Energy cut Sensitivity x 10 -7 Bartol+Naumov RQPM 1e-7 E -2 MC data log 10 (dEdX)>=0.970.507.912.25 NCh>=680.417.915.03 log10(NPe)>=2.850.548.011.35 Upper Half Lower Half Estimator Energy cut Sensitivity x 10 -7 Bartol+Naumov RQPM 1e-7 E -2 MC data log 10 (dEdX)>=0.910.5815.514.014 NCh>=800.4712.815.725 log10(NPe)>=3.150.642.46.44

27 Sean Grullon – TeVPA 200927 The dE/dX distribution of IC40 BurnSample (30 Days LiveTime) No systematics are included

28 Sean Grullon – TeVPA 200928 Sensitivities: Likelihood Method Extraterrestrial Only Energy EstimatorMRFLimit MC ν 0.044* 10 -9 MCμ0.0666.6* 10 -9 Photorec0.1011.01* 10 -8 MuE0.1221.22* 10 -8 NChan0.1251.25* 10 -8

29 Sean Grullon – TeVPA 200929 Fitting Example: No Signal

30 Sean Grullon – TeVPA 200930 Fitting Example: No Signal

31 Sean Grullon – TeVPA 200931 Allowed Signal and Prompt Regions

32 Sean Grullon – TeVPA 200932 Fitting Example: Astrophysical+Bg

33 Sean Grullon – TeVPA 200933 Allowed Signal and Prompt Regions

34 Sean Grullon – TeVPA 200934 Fitting Example: Signal + Prompt + Conventional Atmospheric Neutrinos “Data” sampled from Atm Nu backgro und

35 Sean Grullon – TeVPA 200935 Allowed Extraterrestrial and Prompt Regions


Download ppt "Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford."

Similar presentations


Ads by Google