Download presentation
Presentation is loading. Please wait.
1
16.360 Lecture 6 Last lecture: Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission line Reflection coefficient
2
16.360 Lecture 6 Wave equations d² i(z)/ dz² - ² i(z) = 0, (13) d² V(z)/ dz² - ² V(z) = 0, (10) = + j , = Re ( R’ + j L’) (G’+ j C’), = Im ( R’ + j L’) (G’+ j C’), V(z) = V 0 (14) + e -z-z + - V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz 0, 0, + Z 0 I0I0 + V0V0 = ( R’ + j L’) (G’+j C’)
3
16.360 Lecture 6 lossless transmission line : = + j , = 0, = L’C’ Z0Z0 = L’ C’ = 2 / = L’C’ 1 Vp = / = L’C’ 1 L’C’ = = rrrr c Vp = L’C’ 1 = =
4
16.360 Lecture 6 For TEM transmission line : Vp = L’C’ 1 L’C’ = = 1 = L’C’ = = rrrr c Z0Z0 = L’ C’ summary : V(z) = V 0 + + - V0V0 e jzjz i(z) = I 0 + e -j z + - I0I0 e jzjz e = rrrr c Vp = L’C’ 1 = =
5
16.360 Lecture 6 Voltage reflection coefficient : Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi i(z) = V(z) = V 0 + + - V0V0 e jzjz - e -j z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 - V0V0 + V0V0 = ZLZL Z0Z0 - ZLZL Z0Z0 + 1.| | 1, how to prove it? 2.If Z L = Z 0, = 0. Impedance match, no reflection from the load Z L.
6
16.360 Lecture 6 Today Standing wave Input impedance i(z) = V(z) = V 0 + + - V0V0 e jzjz - e -j z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 - V0V0 + V0V0 with = i(z) = V(z) = V 0 ( ) + + e jzjz - e -j z (e(e + V0V0 Z0Z0 e jzjz ) |V(z)| = | V 0 | | | + e -j z |||| e jzjz + e jrjr = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2
7
16.360 Lecture 6 Standing wave i(z) = V(z) = V 0 + + - V0V0 e jzjz - e -j z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 - V0V0 + V0V0 with = i(z) = V(z) = V 0 ( ) + + e jzjz - e -j z (e(e + V0V0 Z0Z0 e jzjz ) |V(z)| = | V 0 | | | + e -j z |||| e jzjz + e jrjr = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2
8
16.360 Lecture 6 Standing wave i(z) = V(z) = V 0 ( ) - + + e jzjz e -j z (e(e + V0V0 Z0Z0 e jzjz ) |i(z)| = | V 0 | /|Z0|| | + e -j z |||| e jzjz - e jrjr = | V 0 |/|Z 0 | [ 1+ | |² - 2| |cos(2 z + r )] + 1/2 = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2 |V(z)|
9
16.360 Lecture 6 Special cases = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2 |V(z)| 1.Z L = Z 0, = 0 = | V 0 | + |V(z)| 2. Z L = 0, short circuit, = -1 |V(z)| |V0| + - -3 /4- /2- /4 = | V 0 | [ 2 + 2cos(2 z + )] + 1/2 |V(z)| 2|V0| + - -3 /4- /2- /4
10
16.360 Lecture 6 Special cases = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2 |V(z)| 3. Z L = , open circuit, = 1 = | V 0 | [ 2 + 2cos(2 z )] + 1/2 |V(z)| 2|V0| + - -3 /4- /2- /4
11
16.360 Lecture 6 Voltage maximum = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2 |V(z)| | V 0 | [ 1+ | |], + |V(z)| max = when 2 z + r = 2n . –z = r /4 + n /2 n = 1, 2, 3, …, if r <0 n = 0, 1, 2, 3, …, if r >= 0
12
16.360 Lecture 6 Voltage minimum = | V 0 | [ 1+ | |² + 2| |cos(2 z + r )] + 1/2 |V(z)| | V 0 | [ 1 - | |], + |V(z)| min = when 2 z + r = (2n+1) . –z = r /4 + n /2 + /4 Note: voltage minimums occur /4 away from voltage maximum, because of the 2 z, the special frequency doubled.
13
16.360 Lecture 6 Voltage standing-wave ratio VSWR or SWR 1 - | | |V(z)| min S |V(z)| max = 1 + | | S = 1, when = 0, S = , when | | = 1,
14
16.360 Lecture 6 An example Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi Voltage probe S = 3, Z 0 = 50 , l min = 30cm, l min = 12cm, Z L =? l min = 30cm, = 0.6m, S = 3, | | = 0.5, Solution: -2 l min + r = - , r = -36º, , and Z L.
15
16.360 Lecture 6 Input impudence Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi Zg IiIi Z in (z) = V(z) I(z) = + + e jzjz e -j z V0V0 ( ) + - e jzjz e V0V0 ( ) Z0Z0 = + (1 e j2 z ) - (1 e j2 z ) Z0Z0 + (1 e -j2 l ) - (1 e -j2 l ) Z0Z0 Z in (-l) =
16
16.360 Lecture 6 An example A 1.05-GHz generator circuit with series impedance Zg = 10- and voltage source given by Vg(t) = 10 sin( t +30º) is connected to a load ZL = 100 +j5- through a 50- , 67-cm long lossless transmission line. The phase velocity is 0.7c. Find V(z,t) and i(z,t) on the line. Solution: Since, Vp = ƒ, = Vp/f = 0.7c/1.05GHz = 0.2m. = 2 /, = 10 . = (Z L -Z 0 )/(Z L +Z 0 ), = 0.45exp(j26.6º) + (1 e -j2 l ) - (1 e -j2 l ) Z0Z0 Z in (-l) = = 21.9 + j17.4 V 0 [ exp(-j l)+ exp(j l) ] + = Z in (-l) + Zg Z in (-l) Vg
17
16.360 Lecture 6 Next lecture short circuit line open circuit line quarter-wave transformer matched transmission line
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.