Download presentation
Presentation is loading. Please wait.
1
Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) EuroStrings 2006 Cambridge, 4/4/06 Thanks to: Niklas Beisert (Princeton) Johan Engquist (Utrecht) Gabriele Ferretti (Chalmers) Rainer Heise (Potsdam) Vladimir Kazakov (Paris) Thomas Klose (Uppsala) Andrey Marshakov (Moscow) Joe Minahan (Uppsala & Harvard) Kazuhiro Sakai (Paris) Sakura Schäfer-Nameki (Hamburg) Matthias Staudacher (Potsdam) Arkady Tseytlin (Imperial College) Marija Zamaklar (Potsdam)
2
AdS/CFT correspondence Maldacena’97 Gubser,Klebanov,Polyakov’98 Witten’98
3
Strings in AdS 5 xS 5 World-sheet theory is Green-Schwarz coset sigma model on SU(2,2|4)/SO(4,1)xSO(5). Conformal gauge is problematic: no kinetic term for fermions, no holomorphic factorization for currents, … RR flux requires manifest space-time supersymmetry Green,Schwarz’84 Metsaev,Tseytlin’98
4
Integrability in string theory But the model is integrable! Bena,Polchinski,Roiban’03 infinite number of conserved charges separation of variables in classical equations of motion quantum spectrum is determined by Bethe equations √ ? √ Dorey,Vicedo’06
5
Integrability in N=4 SYM Bethe ansatz for planar anomalous dimensions: rigorous up to three loops conjectured to all loop orders Infinite number of conserved charges associated with local operators (with unclear interpretation) Minahan,Z.’02 Beisert,Kristjansen,Staudacher’03 Beisert,Staudacher’03 Beisert,Dippel,Staudacher’04 Beisert,Staudacher’05; Rej,Serban,Staudacher’05
6
N=4 Supersymmetric Yang-Mills Theory Field content: The action: Brink,Schwarz,Scherk’77 Gliozzi,Scherk,Olive’77
7
Operator mixing Renormalized operators: Mixing matrix (dilatation operator):
8
Local operators and spin chains related by SU(2) R-symmetry subgroup a b a b
9
One loop planar (N→∞) diagrams:
10
Permutation operator: Integrable Hamiltonian! Remains such at higher orders in λ for all operators Beisert,Kristjansen,Staudacher’03; Beisert’03; Beisert,Dippel,Staudacher’04; Rej,Serban,Staudacher’05 Beisert,Staudacher’03 Minahan,Z.’02
11
The spectrum Ground state: Excited states (magnons):
12
Zero momentum (trace cyclicity) condition: Anomalous dimension: Bethe’31 Exact spectrum Rapidity:
13
Exact periodicity condition: momentum scattering phase shifts periodicity of wave function
14
u 0
15
bound states of magnons – Bethe “strings” mode numbers u 0
16
Sutherland’95; Beisert,Minahan,Staudacher,Z.’03 Macroscopic spin waves: long strings
17
defined on a set of conoturs C k in the complex plane Scaling limit: x 0
18
Classical Bethe equations Normalization: Momentum condition: Anomalous dimension:
19
Heisenberg model in Heisenberg representation Heisenberg operators: Hiesenberg equations:
20
Continuum + classical limit Landau-Lifshitz equation
21
Consistent truncation String on S 3 x R 1 :
22
Conformal/temporal gauge: Pohlmeyer’76 Zakharov,Mikhailov’78 Faddeev,Reshetikhin’86 2d principal chiral field – well-known intergable model ~energy
23
Equations of motion Currents: Virasoro constraints:
24
Light-cone currents and spins Virasoro constraints: Classical spins: Equations of motion:
25
High-energy approximation Approximate solution at : The same Landau-Lifshitz equation. Kruczenski’03 Kruczenski,Ryzhov,Tseytlin’03
26
Integrability Zero-curvature representation: Equations of motion: equivalent
27
Conserved charges time on equations of motion Generating function (quasimomentum):
28
Non-local charges: Local charges: Analyticity:
29
Classical string Bethe equation Kazakov,Marshakov,Minahan,Z.’04 Normalization: Momentum condition: Anomalous dimension:
30
Quantum Bethe equations (two particle factorization)
31
find the dispersion relation (solve the one-body problem): find the S-matrix (solve the two-body problem): Bethe equations full spectrum find the true ground state Successfully used on the gauge-theory side Staudacher’04; Beisert’05
32
WZ term: Landau-Lifshitz model
33
Perturbation theory in order to get canonical kinetic term Minahan,Tirziu,Tseytlin’04
34
= is not renormalized … S 2→2 = Σ p p` p
35
Summation of bubble diagrams yields Bethe equations
36
Heisenberg model: the same equations with The difference disappears in the low-energy (u→∞) limit. Klose,Z.’06
37
AAF model SU(1|1) sector: in SYM: Callan,Heckman,McLoughlin,Swanson’04 in string theory: Alday,Arutyunov,Frolov’05
38
p0
39
-μ-μ μ – chemical potential μ→-∞ All poles are below the real axis.
40
-m Empty Fermi sea: E +m -m E +m Physical vacuum: Berezin,Sushko’65; Bergknoff,Thaker’79; Korepin’79
41
… S 2→2 = Σ p p` p NO ANTIPARTICLES
42
Exact S-matrix θ – rapidity:
43
Bethe ansatz Im θ j =0: positive-energy states Im θ j =π: negative-energy states Klose,Z.’06
44
Ground state θ iπiπ 0 -k+iπ k+iπ - UV cutoff
45
Mass renormalization: This equation also determines the spectrum, the physical S-matrix,...
46
Weak-coupling (-1<g<1): Non-renormalizable (anomalous dimension of mass is complex) Strong attraction (g>1) Unstable (Energy unbounded below) Strong repulsion (g<-1): Spectrum consists of fermions and anti-fermions with non-trivial scattering
47
Questions Continuous Discrete (string worldsheet) vs. (spin chain) in Bethe ansatz: Possible resolution: extra hidden d.o.f. (“particles on the world sheet that create the spin chain”) spin chain is thus dynamical Choice of the reference state, the true vacuum, antiparticles, … Mann,Polchinski’05 Rej,Serban,Staudacher’05 Gromov,Kazakov,Sakai,Vieira’06 Berenstein,Maldacena,Nastase’02 Beisert,Dippel,Staudacher’04
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.