Download presentation
Presentation is loading. Please wait.
1
Data-Powered Algorithms Bernard Chazelle Princeton University Bernard Chazelle Princeton University
3
Linear Programming Linear Programming
12
N constraints and d variables
14
Dimension Reduction 10000 25 Images (face recognition) Signals (voice recognition) Text (NLP)...... Nearest neighbor searching Clustering...
15
Dimension reduction All pairwise distances nearly preserved
16
Johnson-Lindenstrauss Transform (JLT) c log n 2 d Random Orthogonal Matrix v d
17
Friendly JLT c log n 2 d N(0,1)N(0,1)N(0,1) N(0,1) N(0,1)N(0,1)N(0,1) N(0,1) N(0,1)N(0,1)N(0,1) N(0,1) N(0,1)N(0,1)N(0,1) N(0,1)
18
Friendlier JLT c log n 2 d1+ -1+ -1+ -1+ - 1+ - 1+ - 1+ -1+ - 1+ - 1+ - 1+ - 1+ -1+ - 1+ -1+ - 1+ - d log n 2 2 =
19
Sparse JLT ? c log n 2 1+ - 1+ -1+ - 1+ -1+ - 1+ - 1+ - 0 0 0 0 0 0 0 0 0 d 1 d 0 0 0 0... o(1)-Fraction non-zeros
20
Main Tool: Uncertainty Principle Time Frequency Heisenberg
21
Fast Johnson-Lindenstrauss Transform (FJLT) 1 + - 1 + - 1 + - 1 + - d Discrete Fourier Transform dd c log n 2... 0 N(0,1) = O + d log d + d log 3 n 2 2d Optimal ??
23
theory experimentation
24
computation theory experimentation
25
computation theory experimentation
26
input output Most interesting problems are too hard !! Most interesting problems are too hard !!
27
input output randomization approximation So, we change the model… So, we change the model…
28
input output randomization approximation PTAS for ETSP
29
input output randomization approximation Impossible to approximate chromatic chromatic number within a factor of… Impossible to approximate chromatic chromatic number within a factor of…
30
input output randomization approximation Property Testing [RS’96, GGR’96] Property Testing [RS’96, GGR’96] Berkeley “school” (program checking & probabilistic proofs) Berkeley “school” (program checking & probabilistic proofs)
32
Distance is 3
33
Distance is 4
34
nono yesyes bipartitebipartite
35
nono yesyes bipartitebipartite anythinganything [GR’97][GR’97]
38
Birthday paradox 6262 1818 77 polylog cycles 1717 Mixing case
39
[M’89][M’89] Nonmixing implies small cuts Non-mixing case
40
Dense graphs [GGR98, AK99] Hofstadter. Godel, Escher, Bach. Is graph k-colorable?
41
Main tool Szemerédi’s Regularity Lemma Far from k-colorable Lots of witnesses
42
Property Testing Graph algorithms connectivity acyclicity k-way cuts clique Distributions independence entropy monotonicity distances Geometry convexity disjointness delaunay plane EMST http://www.cs.princeton.edu/~chazelle/http://www.cs.princeton.edu/~chazelle/
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.