Download presentation
Presentation is loading. Please wait.
1
Federica Legger Polarized radiative b decays at LHCb
2
2 Outline Theoretical motivations Angular distributions Observables b production at LHC Selection of b (x) events at LHCb Status and perspectives
3
3 Theoretical motivations b p s d u b d u bb b (X) p k s d u b d u bb u u p k Electromagnetic penguin b s In the SM the photon is predicted to be left-handed, but could have a right-handed component in LR symmetric models; Effective Hamiltonian at LO in s : leftright
4
4 Photon polarization measurements Melikov, Nikitin, Simula, PLB 442, 381 (1998) Grossman, Pirjol, JHEP06, 029 (2000) Atwood, Gronau, Soni, PRL 79, 185 (1997) Mannel, Recksiegel, JPG: NPP 24, 979 (1998) LHCb B factories Knecht, Schietinger, PLB 634, 403 (2006) Gronau, Pirjol, PRD 66, 054008 (2002) B-B interference First measurements of K* polarization in B->K*l+l- by Belle/Babar e + e - conversion Exp. statusTheor. Refs. Latest world average sin2 = 0.0 ± 0.3 Higher K* resonances Difficult to disentangle resonance structure (BaBar, hep/0507031) Gronau, Grossman, Pirjol, PRL 88, 051802 (2002) Charmonium res. interference No results so far... b-baryons Hiller, Kagan, PRD 65, 074038 (2002) Exploit ang. correlations between polarized initial state and final state. Under study at LHCb
5
5 Polarized b (1115) decays Angular distributions for b ( (1115) p ) depend on photon polarization and constrain Hiller, Kagan, Phys Rev D65, 074038 (2002) P B = b polarization p = weak decay parameter Evtgen distribution
6
6 2 indipendent measurements for r, or b polarization measurement: a discrepancy with the value measured in semileptonic b c l X decays would indicate the presence of non-standard right-handed b c currents Direct CP violation at NLO: O(1%) in SM but 10% if NP! r probes the ratio of CP even contributions to NLO Hamiltonian Observables for b (1115)
7
7 (X) resonances (X) parameters (PDG 2004) + BR( b (X) ) (slide 16) 1690 1520 1670 1600 spin = 1/2 spin = 3/2 From the experimental point of view the decay b (1115) is quite hard to observe (c = 7.89 cm) Can we increase the statistics by using heavier resonances?
8
8 Need angular distributions helicity formalism Helicity formalism for b (px) b polarization Polarization density matrix : Helicity amplitudes b (X) (X) px + ½ - -½ Jacob, Wick, Ann Phys 7, 404 (1959)
9
9 Results : J = 1/2 Photon angular distribution depends on photon helicity parameter which is related to |r| Proton angular distribution flat because of P conservation Helicity formalism HQET
10
10 Results : J = 3/2 helicity can now assume the values: ±1/2, ±3/2 4 helicity amplitudes
11
11 Helicity formalism : J = 3/2 Decay probability:
12
12 Similar dependence to spin 1/2 resonances but now depends on the asymmetry of b baryons produced with different helicities Photon angular distribution
13
13 Photon helicity is independent of the helicity of the final state formed in the hadronization process Because of parity conservation in strong interactions, the ratio of baryons produced with helicity 3/2 and 1/2 = ratio of baryons produced with helicity -3/2 and -1/2 Assumptions
14
14 Photon angular distribution dependence can be factorized with the photon helicity parameter and strong parameter no theoretical predictions for … but we can extract it from the proton angular distribution Results : J = 3/2
15
15 (X) with helicity 3/2 dominates » 1 same amount of 1/2 and 3/2 helicity 1 (X) with helicity 1/2 dominates « 1 Possible scenarios for 3/2 - 1/2 p 3/2 1 3/2 1/2 p 3/2 -3 3/2 p 3/2 0 |r| can be probed by measuring 3/2 and SM prediction
16
16 b production at LHC: bb cross section in pp collision = 500 b 10% of produced bb hadronize in B hadrons b dominates ( 90%) b produced with transversal polarization Predictions are P B ~ 20% ATLAS plans to measure it with a statistical precision better than 1% BR ( b (1115) = 4.15 · 10 -5 BR ( b (1520) = 1.30 · 10 -5 BR ( b (1670) = 0.70 · 10 -5 BR ( b (1690) = 0.70 · 10 -5 p1p1 p2p2 bb n Ajaltouni, Conte, Leitner, ‘‘ Λ b into Λ-vector decays ’’, Phys Lett B, 614 (2005) Feasibility of Beauty Baryon Polarization Measurement in b J decay channel by ATLAS – Atlas note Calculations based on Hiller (2002)+PDG2004
17
17 Data sample & Tools DaVinci v12r16 No particular method to optimize cuts values: PT, IPS (with respect to all primaries) cuts on final states Mass window = 4 for resonances with intrinsic width Cut values chosen to kill bb events while maintaining higher possible efficiencies b (1115) pol = long, full300k evts b (1670) pol = long, full 300k evts b (1670) pol = transv, full 300k evts b (1670) phsp, full 300k evts bb inclusive (DC04-v2) 39M evts
18
18 (1115) p c = 7.89 cm About 14% of interact before decay or decay after LHCb spectrometer lost 305000 (generated) 262464 (DoI) T1 T2T3 VELO TT T track Upstream track Long track Downstream track Velo track B Y (T) z (m) - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2 0 0 2 46 8 candidates (associated to MC truth)
19
19 Vertex fit for b (1115) (1115) vertex: refit the vertex explain apply cut on mass and unconstrained chi square b vertex = (1115) + photon fit: PV + the direction Choose the PV with minimum chi square p PV
20
20 UP DLL p- > 6 DLL p-k > 0 PT > 500 MeV sIPS > 4 Charged tracks selection ( (1115)) p: DOWN DLL p- > 10 DLL p-k > 8 PT > 2500 MeV sIPS > 3 LONG DLL p- > 6 DLL p-k > 4 PT > 1600 MeV sIPS > 4 UP PT > 250 MeV sIPS > 4 :: DOWN PT > 350 MeV sIPS > 3 LONG PT > 350 MeV sIPS > 4 Hard DLL and PT cuts on protons to suppress background Slow momentum pions
21
21 UL 2 < 2 m < 27 MeV PT > 500 MeV sIPS > 4 FS > 5 (1115) selection LL 2 < 6 m < 6 MeV PT > 500 MeV sIPS > 4 FS > 4 LD 2 < 2 m < 6 MeV PT > 1500 MeV DD 2 < 2 m < 11 MeV PT > 2000 MeV sIPS > 3 FD > 300 mm = 1.2 MeV = 2.8 MeV
22
22 b ( (1115) p ) LL PT > 2500 MeV 2 < 2 m < 300 MeV ( b ) < 0.15 UL PT > 500 MeV 2 < 2 m < 300 MeV ( b ) < 0.15 LD PT > 1000 MeV 2 < 1 m < 300 MeV ( b ) < 0.15 PT > 3200 MeV/c (LL) PT > 3400, 3800 MeV/c for UL, DD, LD PT (in b direction) [2250, 3000] MeV/c selection b selection DD PT > 2000 MeV 2 < 1 m < 300 MeV ( b ) < 0.15
23
23 Efficiencies for b (1115) tot = 0.011 % no events selected in 39M bb incl Yield = 747 / year B/S < 42 @ 90 % CL = 78.1 MeV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x 10 -4 BR measurement
24
24 b (1670) selection Protons: Only Long tracks DLL p- > 5 DLL p-K > 0 Exclusive DLL selection PT > 600 MeV sIPS > 3 Kaons: Only Long tracks DLL K- > 5 DLL K-p > 0 Exclusive DLL selection PT > 600 MeV sIPS > 3 PT > 2600 MeV 1600 MeV < PT (in b direction) < 2800 MeV (1670) : 2 < 6, m < 100 MeV PT > 1500 MeV sIPS > 4 b : m < 200 MeV FS > 2; PT > 2000 MeV ( b ) < 0.01 PV bb p
25
25 Efficiencies for b (1670) Phase space tot = 0.225 % Annual yield: 2515 long. pol tot = 0.224 % Annual yield: 2507 trans. pol tot = 0.228 % Annual yield: 2553 no events selected in 39M bb incl. B/S = 18.2 @ 90% CL TDR, after L0 x L1 B s , tot = 0.220 % B d K* , tot = 0.156 % After HLT Generic B s,d /K* , = 64 MeV = 69.4 MeV
26
26 Photon polarization b (1670) selected evts. transversally polarized) efficiency corrected (from unpolarized decays)
27
27 Statistical sensitivity on |r| Still far from the SM expected value, but interesting if NP is present! LHCb could be the first to measure the photon polarization in b-> s transitions b (1115) b (1670)
28
28 Conclusions Selection for b (1115) and b (1670) ready BR studies feasible Angular asymmetries studies ongoing: promising photon polarization measurement Can we separate the (1670) and the (1690)? Still observing these resonances could give indications on their production mechanism... LHCb note(s) in preparation
29
Federica Legger Backup slides
30
30 Photon polarization (eff. correction) b (1670) transversally polarized) b (1670) phase space) efficiency
31
31 b ( (1670) p K) Charged tracks: false p true p Protons: Only Long tracks DLL p- > 5 DLL p-k > 0 Exclusive DLL Kaons Only Long tracks DLL K- > 5 DLL K-p > 0 Exclusive DLL false K true K bb incl signal bb incl signal
32
32 b ( (1670) p K) Charged tracks: bb incl signal bb incl signal Protons: PT > 600 MeV sIPS > 3 Kaons PT > 600 MeV sIPS > 3 bb incl signal bb incl signal
33
33 b ( (1670) p K) selection: PT > 2600 MeV/c PT (with respect to b direction) [1600, 2800] MeV/c bb incl signal
34
34 b ( (1670) p K) (1670) selection: bb incl signal 2 < 6 m < 100 MeV PT > 1500 MeV sIPS > 4 bb incl signal bb incl signal bb incl signal b selection: m < 200 MeV FS > 2 PT > 2000 MeV ( b ) < 0.0165 PV bb p
35
35 b (1115) DLL cuts bb incl signal bb incl signal bb incl signal false p true p false p true p false p true p
36
36 b (1115) PT cuts (p and ) bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal
37
37 b (1115) IPS cuts (p and ) bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal
38
38 b (1115) FD cuts ( ) bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal
39
39 KF unconstrained fit 2 (1115) 2 (LL) 2 (LD) 2 (LU) Separated cut on chi2 and mass signal (true ) bb incl (true ) bb incl (fake ) 2 (DD)
40
40 b global fit 2 2 (LL) 2 (DD) 2 (LD) 2 (LU) Fake PV true PV signal (Fake PV) signal (true PV) Fake PV true PV Fake PV true PV Global fit distinguishes fake from true PVs
41
41 b (1115) PT cuts ( b, ) bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal bb incl signal
42
42 b mass resolution (true tracks) Mean = 5606 MeV/c 2 Mean = 5601 MeV/c 2 Mean = 5606 MeV/c 2 Mass peak: 20 MeV offset due to photon calibration 90 MeV
43
43 Photon polar angle res. (sel evts) b (1115) b (1670)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.