Download presentation
Presentation is loading. Please wait.
1
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw Poland XII Nuclear Physics Workshop Kazimierz Dolny, Sept. 21-25, 2005 XII Nuclear Physics Workshop Kazimierz Dolny, Sept. 21-25, 2005
2
Plan IntroductionIntroduction Methods of the calculations ( Macroscopic- microscopic apprach )Methods of the calculations ( Macroscopic- microscopic apprach ) Results:Results: a) single-neutron excitaions a) single-neutron excitaions b) systematic c) α-decay chains of the 269 Ds and 271 Ds c) α-decay chains of the 269 Ds and 271 Ds ConclusionsConclusions
3
Introduction experimental studies of one-particle states;experimental studies of one-particle states; gamma-spectroscopy data up to rutherfordium (Z=104);gamma-spectroscopy data up to rutherfordium (Z=104);
4
3 Li 11 Na 19 K 37 Rb 1H1H 55 Cs 87 Fr 4 Be 12 Mg 38 Sr 20 Ca 56 Ba 88 Ra 39 Y 21 Sc 57 La * 89 Ac + 40 Zr 22 Ti 72 Hf 41 Nb 23 V 73 Ta 42 Mo 24 Cr 74 W 43 Tc 25 Mn 75 Re 44 Ru 26 Fe 76 Os 45 Rh 27 Co 77 Ir 46 Pd 28 Ni 78 Pt 47 Ag 29 Cu 79 Au 48 Cd 30 Zn 80 Hg 5B5B 5B5B 31 Ga 13 Al 49 In 81 Tl 6C6C 6C6C 32 Ge 14 Si 50 Sn 82 Pb 7N7N 7N7N 33 As 15 P 51 Sb 83 Bi 8O8O 8O8O 34 Se 16 S 52 Te 84 Po 9F9F 9F9F 35 Br 17 Cl 53 I 85 At 10 Ne 18 Ar 36 Kr 54 Xe 2 He 86 Rn 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 111 112 112 113 113 114 114 115 115 116 116 118 118 100 Fm 101 Md 102 No 103 Lr 68 Er 69 Tm 70 Yb 71 Lu + Actinides * Lanthanides D.I. MENDELEYEV PERIODIC TABLE OF THE ELEMENTS Transactinides 89 Ac + 105 Db
5
Method of the calculations Yukawa-plus-exponetial model Strutinski shell correction BCS pairing approximation Woods-Saxon potential MacroscopicMicroscopic model
6
One–qusiparticle excitations λnλnλnλn 249 Cf 151 -6.0 - 8.0 E (MeV)
7
Results
16
Phenomenological formula for T α log 10 T α (Z,N) = a Z (Q α - E n ) -1/2 + b Z + c E n = 0.171 MeV
17
Nucleus Q α th MeV Q α tr MeV Q α exp ( GSI ) MeV T α th T α exp 271 Ds 11.0711.0610.74 0.4 ms 1.1 ms 267 Hs 9.759.699.75 259 ms 59 ms 263 Sg 9.219.259.25 0.9 s 0.3 s 259 Rf 9.089.068.87 0.6 s 3.1 s Table I. α-particle energies, α-transition energies Q α tr, experimental Q α, experimrntal and theoretical half-lives Tα th and T α exp for of α -decay chain of the nucleus 271 Ds ( 271 110).
18
Nucleus Q α th MeV Q α tr MeV Q α exp ( GSI ) MeV T α th T α exp 269 Ds 11.6311.5111.11 39 μs 170 μs 265 Hs 10.3610.3510.31 4.8 ms 1.7 ms 261 Sg 9.749.619.56 92 ms 230 ms 257 Rf 9.218.428.77 64 s 4.7 s 253 No 8.198.158.01 1.5 min. 1.7 min. Table II. The same as in Table I, but for chain of the nucleus 269 Ds ( 269 110).
19
Conclusions Good agreement with experiment of one- neutron excitations;Good agreement with experiment of one- neutron excitations; BCS approximation is good for nuclei near closed shells;BCS approximation is good for nuclei near closed shells; A fact of including of single-particle structure of nuclei in α-decay chains improves agreement with experiment.A fact of including of single-particle structure of nuclei in α-decay chains improves agreement with experiment.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.