Presentation is loading. Please wait.

Presentation is loading. Please wait.

Expander flows, geometric embeddings, and graph partitioning Sanjeev Arora Princeton Satish Rao UC Berkeley Umesh Vazirani UC Berkeley.

Similar presentations


Presentation on theme: "Expander flows, geometric embeddings, and graph partitioning Sanjeev Arora Princeton Satish Rao UC Berkeley Umesh Vazirani UC Berkeley."— Presentation transcript:

1 Expander flows, geometric embeddings, and graph partitioning Sanjeev Arora Princeton Satish Rao UC Berkeley Umesh Vazirani UC Berkeley

2 Sparsest Cut S S G = (V, E) c- balanced separator Both NP-hard  G) = min S µ V | E(S, S c )| |S| |S| < |V|/2  c (G) = min S µ V | E(S, S c )| |S| c |V| < |S| < |V|/2

3 Why these problems are important Arise in analysis of random walks, PRAM simulation, packet routing, clustering, VLSI layout etc. Underlie many divide-and-conquer graph algorithms (surveyed by Shmoys’95) Discrete analogs of isoperimetric constant; related to curvature of Riemannian manifolds and 2 nd eigenvalue of Laplacian (Cheeger’70) Graph-theoretic parameters of inherent interest (cf. Lipton-Tarjan planar separator theorem)

4 Previous approximation algorithms 1)Eigenvalue approaches ( Cheeger’70, Alon’85, Alon-Milman’85 ) 2c(G) ¸ L (G) ¸ c(G) 2 /2 c(G) = min S µ V E(S, S c )/ E(S) 2) O(log n) - approximation via LP (multicommodity flows ) (Leighton-Rao’88) Approximate max-flow mincut theorems Region-growing argument (Linial, London, Rabinovich’94, AR’94) 3) Embeddings of finite metric spaces into l 1 Geometric approach; more general result (but still O(log n) approximation)

5 Our results 1.O( ) -approximation to sparsest cut and conductance 2.O( )-pseudoapproximation to c-balanced separator (algorithm outputs a c’-balanced separator, c’ < c) 3.Existence of expander flows in every graph (approximate certificates of expansion) log n Disparate approaches from previous slide get “unified”

6 Semidefinite relaxations for c-balanced separator (and how to round the solutions)

7 LP Relaxations for c-balanced separator Motivation: Every cut (S, S c ) defines a (semi) metric 1 1 1 0 0 X ij 2 {0,1}  i< j X ij ¸ c(1-c)n 2 X ij + X j k ¸ X ik 0 · X ij · 1 Semidefinite There exist unit vectors v 1, v 2, …, v n 2 < n such that X ij = |v i - v j | 2 /4 Min  (i, j) 2 E X ij

8 Semidefinite relaxation (contd) Min  (i, j) 2 E |v i –v j | 2 /4 |v i | 2 = 1 |v i –v j | 2 + |v j –v k | 2 ¸ |v i –v k | 2 8 i, j, k  i < j |v i –v j | 2 ¸ 4c(1-c)n 2 Unit l 2 2 space

9 Unit vectors v 1, v 2,… v n 2 < d |v i –v j | 2 + |v j –v k | 2 ¸ |v i –v k | 2 8 i, j, k ViVi VkVk VjVj Angles are non obtuse Taking r steps of length s only takes you squared distance rs 2 (i.e. distance r s) ss ss

10 Example of l 2 2 space: hypercube {-1, 1} k |u – v| 2 =  i |u i – v i | 2 = 2  i |u i – v i | = 2 |u – v| 1 In fact, every l 1 space is also l 2 2 Conjecture (Goemans, Linial): Every l 2 2 space is l 1 up to distortion O(1)

11 Our Main Theorem Two subsets S and T are  -separated if for every v i 2 S, v j 2 T |v i –v j | 2 ¸  ¸  Thm: If  i< j |v i –v j | 2 =  (n 2 ) then there exist two sets S, T of size  (n) that are  -separated for  =  ( 1 ) <d<d log n

12 Main thm ) O( )-approximation log n v 1, v 2,…, v n 2 < d is optimum SDP soln; SDP opt =  (i, j) 2 E |v i –v j | 2 S, T :  –separated sets of size  (n) Do BFS from S until you hit T. Take the level of the BFS tree with the fewest edges and output the cut (R, R c ) defined by this level   (i, j) 2 E |v i –v j | 2 ¸ |E(R, R c )| £  ) |E(R, R c )| · SDP opt /  · O( SDP opt ) log n

13 Next 10-12 min: Proof-sketch of Main Thm ( algorithm to produce  -separated S, T of size  (n);  = 1/ )

14 Projection onto a random line <d<d v u ?? 1 d 1 d e -t 2 /2 d Pr u [ projection exceeds 2 ] < 1/n 2 log n

15 Algorithm to produce two  –separated sets <d<d u SuSu TuTu 0.01 d Check if S u and T u have size  (n) If any v i 2 S u and v j 2 T u satisfy |v i –v j | 2 ·  repeat until no such v i, v j remain delete them and If S u, T u still have size  (n), output them Main difficulty: Show that whp only o(n) points get deleted d “Stretched pair”: v i, v j such that |v i –v j | 2 ·  and | h v i –v j, u i | ¸ 0.01 Obs: Deleted pairs are stretched and they form a matching.

16 “Matching is of size o(n) whp” : naive argument fails d “ Stretched pair”: v i, v j such that |v i –v j | 2 ·  and | h v i –v j, u i | ¸ 0.01 O( 1 ) £ standard deviation  ) Pr U [ v i, v j get stretched] = exp( - 1 )   = exp( - ) log n E[# of stretched pairs] = O( n 2 ) £ exp(- )log n

17 ViVi Ball (v i,  ) u VjVj 0.01 d Suppose matching of  (n) size exists with probability  (1)… ….stretched pairs are almost everywhere you look!

18 Generating a contradiction: the walk on stretched pairs u ViVi VjVj 0.01 d d r steps 0.01 d r |v final - v i | < r  | | ¸ 0.01r d = O( r ) x standard dev.     v fina l Contradiction (if r large enuff)!!

19 Measure concentration (P. Levy, Gromov etc.) <d<d A A : measurable set with  (A) ¸ 1/4 A  : points with distance ·  to A AA  A  ) ¸ 1 – exp(-  2 d) Reason: Isoperimetric inequality for spheres 

20 Expander flows (approximate certificates of expansion)

21 Expander flows: Motivation G = (V, E) S S Idea: Embed a d-regular (weighted) graph such that 8 S w(S, S c ) =  (d |S|) Cf. Jerrum-Sinclair, Leighton-Rao (embed a complete graph) “Expander” Weighted Graph w satisfies (*) iff L (w) =  (1) [Cheeger] (*) Our Thm: If G has expansion , then a d-regular expander flow exists in it where d=  log n (certifies expansion =  (d) )

22 Example of expander flow n-cycle Take any 3-regular expander on n nodes Put a weight of 1/3n on each edge Embed this into the n-cycle Routing of edges does not exceed any capacity ) expansion =  (1/n)

23 Open problems (circa April’04) Better running time/combinatorial algorithm? Improve approximation ratio to O(1); better rounding?? (our conjectures may be useful…) Extend result to other expansion-like problems (multicut, general sparsest cut; MIN-2CNF deletion) Resolve conjecture about embeddability of l 2 2 into l 1 ; of l 1 into l 2 Any applications of expander flows? O(n 2 ) time; [A., Hazan, Kale] log 3/4 n distortion; [Chawla,Gupta, Racke] Integrality gap is  (log n) [Charikar] Clearer explanation [Naor,Sinclair,Rabani] Better embeddings of l p into l q [Lee]

24 Various new results O(n 2 ) time combinatorial algorithm for sparsest cut (does not use semidefinite programs) [A., Hazan, Kale’04] New results about embeddings: (i) l p into l q [J. Lee’04] (ii) l 2 2 and l 1 into l 2 [CGR’04] (approx for general sparsest cut) Clearer explanation of expander flows and their connection to embeddings [NRS’04]

25 New result (A., Hazan, Kale; 2004) O(n 2 ) time algorithm that given any graph G finds for some d >0 a d-regular expander flow a cut of expansion O( d ) log n Ingredients: Approximate eigenvalue computations; Approximate flow computations (Garg-Konemann; Fleischer) Random sampling (Benczur-Karger + some more) Idea: Define a zero-sum game whose optimum solution is an expander flow; solve approximately using Freund-Schapire approximate solver. )  d) ·  (G) · O(d ) log n

26 A concrete conjecture (prove or refute) G = (V, E);  =  (G) For every distribution on n/3 –balanced cuts {z S } (i.e.,  S z S =1) there exist  (n) disjoint pairs ( i 1, j 1 ), ( i 2, j 2 ), ….. such that for each k, distance between i k, j k in G is O(1/  ) i k, j k are across  (1) fraction of cuts in {z S } ( i.e.,  S: i 2 S, j 2 S c z S =  (1) ) Conjecture ) existence of d-regular expander flows for d = 

27 Formal statement : 9  0 >0 s.t. foll. LP is feasible for d =  (G) log n f p ¸ 0 8 paths p in G 8 i  j  p 2 P ij f p = d (degree) P ij = paths whose endpoints are i, j 8 S µ V  i 2 S j 2 S c  p 2 P ij f p ¸  0 d |S| (demand graph is an expander) 8 e 2 E  p 3 e f p · 1 (capacity)

28 log n


Download ppt "Expander flows, geometric embeddings, and graph partitioning Sanjeev Arora Princeton Satish Rao UC Berkeley Umesh Vazirani UC Berkeley."

Similar presentations


Ads by Google