Download presentation
Presentation is loading. Please wait.
1
Prosite UCSC Genome Browser MSAs and Phylogeny Exercise 2
2
Turning information into knowledge The outcome of a sequencing project is masses of raw data The challenge is to turn this raw data into biological knowledge A valuable tool for this challenge is an automated diagnostic pipe through which newly determined sequences can be streamlined
3
From sequence to function Nature tends to innovate rather than invent Proteins are composed of functional elements: domains and motifs Domains are structural units that carry out a certain function Domains are structural units that carry out a certain function The same domains are The same domains are shared between different proteins Motifs are shorter Motifs are shorter sequences with certain biological activity
4
http://www.ebi.ac.uk/interpro/
5
InterPro An integrated documentation resource for protein families, domains and sites Groups signatures describing the same protein family or domain Combines a number of databases that use different methodologies to derive protein signature: UniProt: UniProtKB Swiss-Prot, TrEMBL, UniRef,UniParc UniProt: UniProtKB Swiss-Prot, TrEMBL, UniRef,UniParc prosite: documented DB on domains, families and functional sites. prosite: documented DB on domains, families and functional sites. Pfam: a DB of protein families represented by MSAs Pfam: a DB of protein families represented by MSAs
6
InterPro search
9
http://www.expasy.ch/prosite/
10
prosite A method for determining the function of uncharacterized translated protein sequences Consists of a DB of annotated biologically important sites/patterns/motifs/signature/fingerprints
11
prosite Entries are represented with patterns or profiles pattern 54321.0010.66A.1000T.00.6600.33C.00.3300G profile [AC]-A-[GC]-T-[TC]-[GC] Profiles are used in prosite when the motif is relatively divergent, and it is difficult to represent as a pattern
12
Scanning prosite Query: sequence Query: pattern Result: all patterns found in sequence Result: all sequences which adhere to this pattern
13
Patterns with a high probability of occurrence Entries describing commonly found post- translational modifications or compositionally biased regions. Found in the majority of known protein sequences High probability of occurrence
14
prosite sequence query
16
prosite pattern query
19
UCSC Genome Browser
20
Reset all settings of previous user UCSC Genome Browser - Gateway
23
UCSC Genome Browser query results
24
UCSC Genome Browser Annotation tracks Vertebrate conservation mRNA (GenBank) RefSeq UCSC Genes Base position Single species compared SNPs Repeats Gene Direction Exon Intron UTR
25
USCS Gene
26
UCSC Genome Browser - movement Zoom x3 + Center
27
UCSC Genome Browser – Base view
28
Annotation track options dense squish full pack
29
Annotation track options Another option to toggle between ‘pack’ and ‘dense’ view is to click on the track title Sickle-cell anemia distr. Malaria distr.
30
BLAT BLAT = Blast-Like Alignment Tool BLAT is designed to find similarity of >95% on DNA, >80% for protein Rapid search by indexing entire genome. Good for: 1. Finding genomic coordinates of cDNA 2. Determining exons/introns 3. Finding human (or chimp, dog, cow…) homologs of another vertebrate sequence
31
BLAT on UCSC Genome Browser
33
BLAT Results
34
Match Non-Match (mismatch/indel) Indel boundaries
35
BLAT Results
36
BLAT Results on the browser
37
Getting DNA sequence of region
39
Clustal X – A Multiple Alignment Tool
40
Input: multiple sequence Fasta file >gi|21536452|ref|NP_002762.2| mesotrypsin preproprotein [Homo sapiens] MNPFLILAFVGAAVAVPFDDDDKIVGGYTCEENSLPYQVSLNSGSHFCGGSLISEQWVVSAAHCYKTRIQVRLGEHNIKVLEGNEQFINAAKIIRHPKYNRDTLDNDIMLIKLSSPAVINARVSTISLPTAPPAAGTECLISGWGNTLSFGADYPDELKCLDAPVLTQAECKASYPGKITNSMFCVGFLEGGKDSCQRDSGGPVVCNGQLQGVVSWGHGCAWKNRPGVYTKVYNYVDWIKDTIAANS >gi|114051746|ref|NP_001040585.1| protease, serine, 2 [Macaca mulatta] MNPLLILAFVGVAVAAPFDDDDKIVGGYTCEENSVPYQVSLNSGYHFCGGSLINEQWVVSAAHCYKTRIQVRLGEHNIEVLEGTEQFINAAKIIRHPDYDRKTLNNDILLIKLSSPAVINARVSTISLPTAPPAAGAEALISGWGNTLSSGADYPDELQCLEAPVLSQAECEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVSNGQLQGIVSWGYGCAQKNRPGVYTKVYNYVDWIRDTIAANS >gi|6755891|ref|NP_035775.1| mesotrypsin [Mus musculus] MNALLILALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQFVNAAKIIKHPNFNRKTLNNDIMLLKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEASYPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNRELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN >gi|6981422|ref|NP_036861.1| protease, serine, 2 [Rattus norvegicus] MRALLFLALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAAHCYKSRIQVRLGEHNINVLEGNEQFVNAAKIIKHPNFDRKTLNNDIMLIKLSSPVKLNARVATVALPSSCAPAGTQCLISGWGNTLSSGVNEPDLLQCLDAPLLPQADCEASYPGKITDNMVCVGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN >gi|27819626|ref|NP_777115.1| pancreatic anionic trypsinogen [Bos taurus] MHPLLILAFVGAAVAFPSDDDDKIVGGYTCAENSVPYQVSLNAGYHFCGGSLINDQWVVSAAHCYQYHIQVRLGEYNIDVLEGGEQFIDASKIIRHPKYSSWTLDNDILLIKLSTPAVINARVSTLALPSACASGSTECL...
41
One of the options to get multiple sequence Fasta file
43
Input: multiple sequence Fasta file >gi|21536452|ref|NP_002762.2| mesotrypsin preproprotein [Homo sapiens] MNPFLILAFVGAAVAVPFDDDDKIVGGYTCEENSLPYQVSLNSGSHFCGGSLISEQWVVSAAHCYKTRIQVRLGEHNIKVLEGNEQFINAAKIIRHPKYNRDTLDNDIMLIKLSSPAVINARVSTISLPTAPPAAGTECLISGWGNTLSFGADYPDELKCLDAPVLTQAECKASYPGKITNSMFCVGFLEGGKDSCQRDSGGPVVCNGQLQGVVSWGHGCAWKNRPGVYTKVYNYVDWIKDTIAANS >gi|114051746|ref|NP_001040585.1| protease, serine, 2 [Macaca mulatta] MNPLLILAFVGVAVAAPFDDDDKIVGGYTCEENSVPYQVSLNSGYHFCGGSLINEQWVVSAAHCYKTRIQVRLGEHNIEVLEGTEQFINAAKIIRHPDYDRKTLNNDILLIKLSSPAVINARVSTISLPTAPPAAGAEALISGWGNTLSSGADYPDELQCLEAPVLSQAECEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVSNGQLQGIVSWGYGCAQKNRPGVYTKVYNYVDWIRDTIAANS >gi|6755891|ref|NP_035775.1| mesotrypsin [Mus musculus] MNALLILALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQFVNAAKIIKHPNFNRKTLNNDIMLLKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEASYPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNRELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN >gi|6981422|ref|NP_036861.1| protease, serine, 2 [Rattus norvegicus] MRALLFLALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAAHCYKSRIQVRLGEHNINVLEGNEQFVNAAKIIKHPNFDRKTLNNDIMLIKLSSPVKLNARVATVALPSSCAPAGTQCLISGWGNTLSSGVNEPDLLQCLDAPLLPQADCEASYPGKITDNMVCVGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN >gi|27819626|ref|NP_777115.1| pancreatic anionic trypsinogen [Bos taurus] MHPLLILAFVGAAVAFPSDDDDKIVGGYTCAENSVPYQVSLNAGYHFCGGSLINDQWVVSAAHCYQYHIQVRLGEYNIDVLEGGEQFIDASKIIRHPKYSSWTLDNDILLIKLSTPAVINARVSTLALPSACASGSTECL...
44
Input: multiple sequence Fasta file >gi|21536452|ref|NP_002762.2| mesotrypsin preproprotein [Homo sapiens] MNPFLILAFVGAAVAVPFDDDDKIVGGYTCEENSLPYQVSLNSGSHFCGGSLISEQWVVSAAHCYKTRIQVRLGEHNIKVLEGNEQFINAAKIIRHPKYNRDTLDNDIMLIKLSSPAVINARVSTISLPTAPPAAGTECLISGWGNTLSFGADYPDELKCLDAPVLTQAECKASYPGKITNSMFCVGFLEGGKDSCQRDSGGPVVCNGQLQGVVSWGHGCAWKNRPGVYTKVYNYVDWIKDTIAANS >gi|114051746|ref|NP_001040585.1| protease, serine, 2 [Macaca mulatta] MNPLLILAFVGVAVAAPFDDDDKIVGGYTCEENSVPYQVSLNSGYHFCGGSLINEQWVVSAAHCYKTRIQVRLGEHNIEVLEGTEQFINAAKIIRHPDYDRKTLNNDILLIKLSSPAVINARVSTISLPTAPPAAGAEALISGWGNTLSSGADYPDELQCLEAPVLSQAECEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVSNGQLQGIVSWGYGCAQKNRPGVYTKVYNYVDWIRDTIAANS >gi|6755891|ref|NP_035775.1| mesotrypsin [Mus musculus] MNALLILALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQFVNAAKIIKHPNFNRKTLNNDIMLLKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEASYPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNRELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN >gi|6981422|ref|NP_036861.1| protease, serine, 2 [Rattus norvegicus] MRALLFLALVGAAVAFPVDDDDKIVGGYTCQENSVPYQVSLNSGYHFCGGSLINDQWVVSAAHCYKSRIQVRLGEHNINVLEGNEQFVNAAKIIKHPNFDRKTLNNDIMLIKLSSPVKLNARVATVALPSSCAPAGTQCLISGWGNTLSSGVNEPDLLQCLDAPLLPQADCEASYPGKITDNMVCVGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN >gi|27819626|ref|NP_777115.1| pancreatic anionic trypsinogen [Bos taurus] MHPLLILAFVGAAVAFPSDDDDKIVGGYTCAENSVPYQVSLNAGYHFCGGSLINDQWVVSAAHCYQYHIQVRLGEYNIDVLEGGEQFIDASKIIRHPKYSSWTLDNDILLIKLSTPAVINARVSTLALPSACASGSTECL...
45
Step1: Load the sequences
46
Sequences and conservation view
47
Step2: Perform Alignment
48
Sequences and conservation view
50
Step 3: Create tree
51
Step 4: NJPlot
53
The Newick tree format is used to represent trees as strings CA D In Newick format: ((A,C),(B,D)); B Each pair of parenthesis () enclose a clade in the tree, and the comma separates the members of the corresponding clade. “;” – is always the last character
54
How robust is our tree?
55
We need some statistical way to estimate the confidence in the tree topology But we don’t know anything about the tree topology distribution or parameters The only data source we have is our data (MSA) So, we must rely on our own resources: “pull up by your own bootstraps” How robust is our tree?
56
Bootstrap (and jackknife)
57
Jackknife 1. We create n (typically 100-1000) new MSAs (pseudo-data sets) by randomly sampling half of the characters. (random samples without replacement) We do not change the number of sequences, just the number of positions! POS: 52316 1 : TATTT 2 : CATTT 3 : CACTT N : AACTT POS: 18745 1 : TTTAT 2 : TAACC 3 : TAACC N : TGGGA POS: 18394 1 : TTGTA 2 : TAGAC 3 : TAAAC N : TGAGG
58
Jackknife 2. We reconstruct a tree from each data set, using the same method used for reconstructing the original tree POS: 52316 1 : TATTT 2 : CATTT 3 : CACTT N : AACTT POS: 18745 1 : TTTAT 2 : TAACC 3 : TAACC N : TGGGA POS: 18394 1 : TTGTA 2 : TAGAC 3 : TAAAC N : TGAGG Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4
59
3. For each node in our original tree, we count the number of times it appeared in the Jackknife analysis Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 Back to Jackknife Sp1 Sp2 Sp3 Sp4 67% 100% In 67% of the data sets, the node SP1+SP2 was found
60
Bootstrap The same as jackknife, but instead of sampling K/2 positions, we sample K positions with replacement
61
Bootstrap 1. Resample K positions n times 12345 K 1 : ATCTG…A 2 : ATCTG…C 3 : ACTTA…C N : ACCTA…T 11244 K 1 : AATTT…T 2 : AATTT…G 3 : AACTT…T N : AACTT…T 47789…K 1 : TTTAT…T 2 : TAACC…G 3 : TAACC…T N : TGGGA…T 15578…K 1 : AGGTA…T 2 : AGGAC…G 3 : AAAAC…A N : AAAGG…C
62
Bootstrap 2. Reconstruct a tree from each data set using the same method used for reconstructing the original tree Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 11244 K 1 : AATTT…T 2 : AATTT…G 3 : AACTT…T N : AACTT…T 47789…K 1 : TTTAT…T 2 : TAACC…G 3 : TAACC…T N : TGGGA…T 15578…K 1 : AGGTA…T 2 : AGGAC…G 3 : AAAAC…A N : AAAGG…C
63
Bootstrap 3. For each node in our original tree, we count the number of times it appeared in the bootstrap analysis Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 Sp1 Sp2 Sp3 Sp4 67% 100%
64
Step 3.5 - Bootstrap
65
Bootstrap values on NJPlot Note: ClustalX saves trees as.ph file trees with bootstrap are saved as.phb You might have to reopen the tree…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.