Presentation is loading. Please wait.

Presentation is loading. Please wait.

Molecules in Starbursts and Active Galactic Nuclei Amiel Sternberg School of Physics & Astronomy Tel Aviv University NGC 1068.

Similar presentations


Presentation on theme: "Molecules in Starbursts and Active Galactic Nuclei Amiel Sternberg School of Physics & Astronomy Tel Aviv University NGC 1068."— Presentation transcript:

1 Molecules in Starbursts and Active Galactic Nuclei Amiel Sternberg School of Physics & Astronomy Tel Aviv University NGC 1068

2 Neutral interstellar hydrogen clouds where 6-13.6 eV far-ultraviolet (FUV) radiation dominates the chemistry and gas heating. FUV photon penetration limited by dust absorption. Heating by photo-electric emission of electrons from dust grains. Chemistry driven by FUV ionization. Photon-Dominated Regions (PDRs) X-ray Dominated Regions (XDRs) Neutral hydrogen clouds where (keV) X-rays dominate the chemistry and gas heating. X-ray penetration limited by photoionization of the “ heavy elements ”. (Greater photon penetration lengths than in PDRs). Heating by X-ray photoionization of H and H 2. (More efficient gas heating than in PDRs). Chemistry driven by X-ray ionization. Seyfert-2 Galaxy NGC 1068 Orion Bar PAH CO H2H2

3 Broadly defined, PDRs include: (8000  K) (100  K) Diffuse “ warm neutral medium ” (WNM) and “ cold neutral medium ” (CNM). Translucent clouds: moderate optical extinction (A V < 5), low gas densities, n H < 1000 cm -3 weak FUV fields. Dense molecular clouds: high extinction (A V ~ 10), n H > 1000 cm -3 intense FUV fields near massive and hot “ OB-type ” stars. ~90% of the Galactic molecular ISM may be “ photon-dominated ”. Photon-Dominated Regions:

4 PDRs: Basic Structure: 1-D steady-state model, escape probability method. FUV 6-13.6 eV ( “ non-ionizing ” ) 100  to 2000  K 10  to 100  K Grain surface formation, H 2 self-shielding. Controlling parameters: 1) cloud density, pressure 2) FUV intensity 3) grain scattering properties 4) H 2 formation rate coefficient 5) geometry/clumpiness 6) gas phase abundances 7) magnetic field.

5 Starburst Galaxy M82 (optical) distance = 3.3 Mpc vib rot H 2 infrared/submillimeter/millimeter spectroscopy (e.g. Genzel & Cesarsky 2000) PDR emission lines Dense PDRs: Dense PDRs exposed to intense FUV fields in star-forming molecular clouds are important as sources of luminous atomic fine-structure and molecular line (cooling) radiation, and far-IR thermal dust continuum emission. Line to continuum ratio typically 0.1 – 1%. Far-infrared dust continuum is reradiated ultraviolet stellar radiation.

6 Far-Ultraviolet (FUV) Radiation Field (6 - 13.6 eV 912 - 2070 Å ): Empirically based for solar neighborhood. Habing 1968 BAN 19, 421; Draine 1978 ApJS 36, 595 photon energy (eV) F(E) (Photons cm -2 s -1 ster -1 eV -1 ) interstellar FUV field Produced by massive and hot 3-120 M  “ OB type ” stars, in associations and clusters. Parravano, Hollenbach & McKee 2003 ApJ 584, 797 G 0  1

7 Radiation Fields of Evolving OB Clusters: Sternberg, Hoffmann & Pauldrach 2003, ApJ, 599, 1333 FUV EUV Intensity and spectral shape of FUV field depend on cluster mass and age. G 0 >> 1

8 Heating Mechanisms: FUV photoelectric heating, beginning with Spitzer 1948 ApJ 107, 6 FUV-pumping of H 2 in dense PDRs. Sternberg & Dalgarno 1989 ApJ 338, 197 Leads to high gas temperatures T > 1000  K in the H/H 2 layers.

9 CII 157.7  m Fine-Structure Line Cooling: Expected theoretically - e.g. Dalgarno & McCray 1972 ARAA 10, 375 First far-IR (Lear jet) detections were in in NGC 2024 and Orion. Russell et al. 1980 ApJ 240, L99 Since then, widely detected with far-infrared spectrometers, KAO, ISO... … and most recently in the millimeter- waves, in a high redshift quasar. Maiolino et al. 2005 AA 440 L51 Tielens & Hollenbach 1985 ApJ 291, 722 CNM WNM Wolfire et al. 2003 dense PDRs T (  K) CII 157.7  m (erg s -1 particle -1 )

10 Accounting for: [CII] 157.7  m [OI] 63.2  m & 145.6  m [CI] 609.2  m & 229.9  m and other “ low-ionization ” fine-structure emission lines observed in star-forming molecular clouds. Line strengths ~ 0.1 - 1% of far-IR dust continuum. FUV (6-13.6 eV) heating via photoelectric emission from dust grains: mean photon energy = 10 eV typical grain work function = 6 eV (for neutral grains). photoelectric yield = 0.1 Thus, heating efficiency = (4/10) x 0.1 = 0.04 (smaller for positively charged grains). Fine-Structure Emission Lines in Star-Forming Molecular Clouds:

11 FUV intensity G 0 line intensity (erg cm -2 s -1 sr -1 ) [CII] 157.7  m [OI] 63.2  m Fine-Structure Line Emissions from PDRs: Hollenbach & Tielens 1997 ARAA, 35, 179 Hollenbach & Tielens 1999 Rev. Mod. Phys., 71, 173 0.05 x far-IR

12 Neutral Atomic Carbon: S + C +  S + + C C + + e  C + photon “ radical region ”

13 Polycyclic Aromatic Hydrocarbons (PAHs): Reflection Nebula NGC 7023 (optical) Herbig B3Ve star Optical  “internal conversion”  IR Draine 2002 Cesarsky et al. 1996 AA 315 L305 Infrared Space Observatory

14 PAHs in PDRs: Bakes & Tielens 1998 ApJ 499, 258 PAH + PAHPAH - dashed – without PAHs solid – with PAHs (2 x 10 -7 ) mutual neutralization C + + PAH -  C + PAH competes with or dominates radiative recombination C + + e  C + photon Lepp & Dalgarno 1988 ApJ 335, 769 Similarly, “ grain-assisted recombination ” may become important for fractional ionizations x e < 10 -3. Draine & Sutin 1987 ApJ 320, 803 Weingartner & Draine 2001 ApJ 563, 842

15 Molecular Diagnostics: CN / HCN in NGC 7023 (Reflection Nebula): Reflection Nebula NGC 7023 (optical)

16 Molecular Diagnostics: CN / HCN in NGC 7023 (Reflection Nebula): At interface: G 0 = 2.4 x 10 3 n = 1.0 x 10 4 cm -3 Plateau de Bure & 30m illuminating star (Herbig B3Ve) Fuente et al. 1993 AA 276, 473 2003 AA 899, 913 Molecular Peak CN / HCN small PDR Peak CN / HCN large Distance from star (arcseconds)

17 Free Carbon and CN / HCN: Boger & Sternberg 2005 ApJ 632, 302 G 0 = 10 3 n = 10 4 cm -3

18 Free Carbon and CN / HCN: Boger & Sternberg 2005 ApJ 632 302 G 0 = 10 3 n = 10 4 cm -3

19 CN / HCN in the “ Radical Region ” : CN peak forms where the C + density is still high, but where the CN photodissociation rate is attenuated.

20 XDR highly ionized region H H/H 2  0.01 H 2 x e  10 -2 – 10 -1 x e  10 -3 – 10 -2 x e < 10 -3 High H Xray / n ……………………..…… Low H Xray / n keV X-rays H Xray = X-ray photon energy deposition rate n = gas density X-ray Dominated Regions (XDRs): Maloney, Hollenbach & Tielens 1996 Sternberg, Yan & Dalgarno 1996 Yan & Dalgarno 1997 Meijerink & Spaans 2005 T ~ 10 4 K T ~ 2000 K T < 200 K C +, C C, C + CO, C, C + O O O, OH, O 2, H 2 O large penetration depth

21 ionization excitation Coulomb scattering X-ray Photon Energy Secondary Electron Energy Deposition: H 2 + Xray  H 2 + + e* e* + H 2  H 2 + + e + e* H 2 + + H 2  H 3 + + H H 3 + + e  H 2 + H So almost all of the ionization energy (15.4 eV) is available for gas heating. Glassgold & Langer 1974 ApJ 186, 159 Energy lost to e* per ion-pair produced = 37.7 eV Dalgarno, Yan & Liu 1999 ApJS, 125 237 So, for a molecular XDR, the X-ray heating efficiency  15.4 / 37.7 = 0.4 … much higher than in PDRs. UV decay: photo- dissociation and dust heating,  far-IR “ fast electron ”

22 n = 10 3 cm -3 Fine-Structure Line Emissions from XDRs: far-IR continuum Maloney, Hollenbach & Tielens 1996 ApJ 466, 571

23 Extragalactic PDRs and XDRs

24 “ The Antennae ” NGC 4038/4039 Interacting Galaxies Hubble Space Telescope (optical) Infrared Space Observatory (10  m) Keck

25 FUV-Pumped Molecular Hydrogen in the Antennae: Mid-IR Cluster Gilbert et al. 2000 ApJ 533, L57 H 2 vibrational emission lines

26 FUV Pumping and Photodissociation of Molecular Hydrogen: Near IR FUV Pumping Dissociation Effective Potential Energy v=0 1 2 3 Internuclear Separation Energy Black & Dalgarno 1976 Black & van Dishoeck 1987 Sternberg 1988 Sternberg & Dalgarno 1989 Draine & Bertoldi 1996 Sternberg & Neufeld 1999 Shaw et al. 2005 CLOUDY

27 NGC 4038/4039 interacting galaxies CII emission from NGC 4038/4039 Nikola et al. 1998 ApJ 504, 749 Dense PDRs dominate: G 0 = 500 n H = 10 5 cm -3 (CNM a small fraction.)

28 High Redshift Detection of the CII 157.7  m Line: Maiolino et al. 2005 AA 440 L51 IRAM 30-meter z = 6.42 quasar J1148+5251 L FIR = 2.2 x 10 13 L  L CII = 4.4 x 10 9 L  Star-formation rate  3000 M  yr -1 L CII / L FIR = 2 x 10 -4 small! (similar deficit observed in ULIRGs) [CII] CO(6-5)

29 CII Line Deficit in Ultra-Luminous IR Galaxies (ULIRGs): ISO-LWS ULIRG sample. L IR > 10 12 L  Luhman et al. 2003 ApJ 594, 758 Possible Explanations 1)G 0 / n >> 1 cm 3 in ULIRGs inefficient photoelectric gas heating. 2)Underabundance of OB stars (unlikely). 3) Self absorption. 4) Absorption of UV photons in dusty HII regions. Requires high ionization- parameters (U   dust ). Is this consistent with nebular emission-line excitation? TBD (basic assumption: FIR is reradiated FUV energy.)

30 Starburst Galaxy M82 (optical) distance = 3.3 Mpc CN / HCN in M82 Fuente et al. 2005 ApJ 619 L155 CN/HCN ~ 5 across 650 pc star-forming disk. PDR signature.

31 XDRs and the Active Nucleus in NGC 4258: Central luminosity provided by an accreting, super- massive, black hole. X-rays. distance = 7.3 Mpc

32 NGC 4258: Water Masers Around the Supermassive Black Hole in NGC 4258: red-shifted maser spots blue-shifted maser spots In the galaxy center: A resolved Keplerian disk with orbiting water maser spots. v 2 = GM / R M = 3 x 10 7 M  ortho - H 2 O 22 GHz Energy (cm -1 ) rotational quantum number ”

33 XDR Production of H 2 O: MASING Neufeld, Maloney & Conger 1994 ApJ 436, L127

34 H 2 O Formation: OHH2OH2O e e H3O+H3O+ H2O+H2O+ OH + H3+H3+ H2H2 H2H2 O ion-molecule (cold) Herbst & Klemperer, 1973, ApJ, 185, 505 Prasad & Huntress, 1980, ApJS, 43, 1 H2H2 H2H2 neutral-neutral (warm) Neufeld & Dalgarno 1989, ApJ, 340 869 (J-shocks) Sternberg & Dalgarno 1995, ApJS, 99, 565 (PDRs) Maloney, Hollenbach & Tielens 1996, ApJ, 466, 571 (XDRs)

35 NGC 1068 (optical) Molecules in the Seyfert-2 Galaxy NGC 1068 (M77): 1 kpc distance = 15.5 Mpc

36 Molecules in the Seyfert-2 Galaxy NGC 1068: 100 pc IRAM 30m + PdB Tacconi et al. 1994, ApJ, 426, L77 Sternberg, Genzel & Tacconi 1994, ApJ, 436, L131 Helfer & Blitz 1995, ApJ, 450, 90 Usero et al. 2004, AA, 419, 897

37 XDRs in NGC 1068 ? In the nucleus, HCN/CO  10 -3 (large!) … … possible signature of enhanced ionization rate in molecular gas exposed to X-rays. Lepp & Dalgarno 1996, AA, 306, L21 Usero et al. 2004, AA, 419, 897 M gas  5 x 10 7 M  L Xray  2 x 10 11 L 

38 fractional abundance n /  -17 (cm -3 ) gas-density / ionization-rate “ high-ionization phase ” “ low-ionization phase ” Boger & Sternberg 2005 ApJ 632, 302 2006 ApJ in press High-ionization rate gives large HCN / CO … and also large CN / HCN as observed in the nucleus of NGC 1068. Usero et al. 2004 Note: C / CO is large in the high-ionization phase.

39 XDRs versus PDRs? In XDRs multiply charged atomic ions co-exist with neutral H, H 2 and He. Produced via inner-shell photoionization, & Auger decay. Multiply charged species may persist when charge-transfer neutralization is slow, e.g., C 2+ or S 2+ [S III] 33.5  m & 18.7  m fine-structure emissions as XDR diagnostics. or if react with H 2 lead to enhanced CH + or SH +.

40 A Golden Age! Space Infrared Telescope Facility (SIRTF) Stratospheric Observatory for Infrared Astronomy Atacama Large Millimeter Array (ALMA) Herschel Space Observatory (submillimeter)


Download ppt "Molecules in Starbursts and Active Galactic Nuclei Amiel Sternberg School of Physics & Astronomy Tel Aviv University NGC 1068."

Similar presentations


Ads by Google