Download presentation
Presentation is loading. Please wait.
1
A new approach to the 176 Lu puzzle clock or thermometer? an astrophysical quest and a nuclear challenge 20 years of nuclear physics level schemes, cross sections, IR finally the Torino solution
2
the s-process branching at 176 Lu 152 154 151 Yb 176 179 Lu Hf p process s process r process 180 175 174 176 177 178 176 t 1/2 = 36 Gyr !!
3
Audouze, Fowler, & Schramm identify 176 Lu as a cosmic clock (1972) ?
4
the clock is challenged by Richard Ward (1980)
5
life is never easy lots of nuclear input: (1) of 176 Lu under stellar temperatures (2) (n, ) cross sections for s-process flow (3) isomeric ratio 152 154 151 Yb 176 179 Lu Hf p process s process r process 180 175 174176 177 178 3.7 h 36 Gyr induced transitions by thermal photons?
6
(1) 176 Lu decay are isomer and ground state connected at high T ? i gs m Yb 176 Lu Hf 175 174 176 177 178 3.7 h 36 Gyr
7
GAMS spectrometry at ILL Grenoble first mediating level at 838 keV ! f n,eff f n (n n, T) Yb 176 Lu Hf 175 174 176 177 178 3.7 h 36 Gyr
8
low mass AGB stars – the main s component in 1999
9
(2) stellar (n, ) cross sections 40 BaF 2 crystals 12 pentagons & 28 hexagons 15 cm crystal thickness sample Pb neutron target p-beam n-beam (n, ): TOF with total absorption calorimeter @ FZK
10
accurate (n, ) cross sections at FZK measured (E n ) by time of flight, 3 < E n < 225 keV for all Yb, Lu, and Hf isotopes to ±1%, determined Maxwell-average for stellar spectrum
11
3.7 h (3) partial cross section to isomer isomeric ratio = ( to isomer) / tot activation in quasi-stellar spectrum 7 Li(p,n) 7 Be kT=25 keV 18 O(p,n) 18 F kT=5 keV
12
gamma spectroscopy with HPGe detector isomeric ratio spectrum after irradiation 176 Lu m 176 Lu g
13
improved nuclear physics input and refined low mass AGB star model level scheme of 176 Lu + MACS to ± 1% for 174 Yb, 176 Yb 175 Lu, 176 Lu 176 Hf, 177 Hf, 178 Hf… + IR( 176 Lu) @ kT= 5 keV kT=25 keV branching factor f n (n n, T) f n chosen for 6 different neutron density situations throughout each thermal pulse covering a range 0.20 < f n < 0.92 3 10 10 cm -3 3 10 9 cm -3 3 10 8 cm -3
14
s production of 176 Lu and 176 Hf during and between thermal pulses Yb 176 Lu Hf 175 174 176 177178 h Gyr 176 Lu 176 Hf 176 Lu 176 Hf
15
the main s component (in %) 1999 176 Lu 90 176 Hf 113 ATOMIC MASS OVERABUNDANCES NORMALIZED TO 151 Sm 2006 104 96 after 5Gyr 96 97
16
summary the abundance ratio 176 Lu/ 176 Hf is determined by interplay of several nuclear physics features with the stellar environment decay rate, cross sections, isomers T(t) and n n (t) this interplay is so complex that the chance to obtain the correct answer simply by “ben trovare“ is negligible in a wider context this holds also for similar independent s-process branchings; hence these cases provide the most crucial test for stellar models of the AGB phase
17
Karlsruhe: C. Arlandini, H. Beer, S. Dababneh, M. Heil, N. Klay, R. Plag, R. Reifarth, G. Schatz, F. Voss, N. Winckler, K. Wisshak Grenoble: H. Börner, C. Doll, F. Hoyler, B. Krusche, S. Robinson, K. Schreckenbach Munich: U. Mayerhofer, G. Hlawatsch, H. Lindner, T. von Egidy Basel: T. Rauscher Sofia: W. Andrejtscheff, P. Petkov Obninsk: L. Kazakov Prague: F. Becvar, M. Krticka Chicago: A. Davis Beijing: W. Zhao Teramo: O. Straniero Torino: S. Bisterzo, M. Busso, R. Gallino
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.