Download presentation
Presentation is loading. Please wait.
2
Earth – Maps and Navigation size/shape/rotation of Earth is fundamental to ocean dynamics - interesting to know history of Earth’s geometry - need to know how to describe location and size of features - bit of navigational history (can use oceans/celestial) Geography 104 - “Physical Geography of the World’s Oceans”
3
Greek mathematician, poet, athlete, geographer and astronomer Eratosthenes of Cyrene (c.275-192): http://www.livius.org/aj-al/alexander/alexander_t33.html Interesting to know
4
http://epod.usra.edu/archive/epodviewer.php3?oid=61280 800 km Alexandria & Syene (Aswan)
5
Eratosthenes’ estimate of earth’s diameter http://www.nos.noaa.gov/education/kits/geodesy/media/supp_geo02a.html 360º x 800 km 7.2º C = C = earth’s circumference = 40,000 km = 7.2°
6
Eratosthenes’ estimate of earth’s diameter http://www.nos.noaa.gov/education/kits/geodesy/media/supp_geo02a.html 7.2 º 360º = 800 km C C = earth’s circumference = 40,000 km (stadia) = 7.2° Modern estimate of Earth’s radius, r e = 6371 km C=2 r e = 40,030 km
7
Eratosthenes
8
polar radius = 6357 km equatorial radius = 6378 = 0.9967 radius of sphere with Earth’s volume is 6371 km non-spherical shape important for satellite orbits
9
Latitude and Longitude – Mollweide projection latitude line (equator only great circle latitude) longitude line (great circle) zonal meridional
10
Latitude and Longitude – Mollweide projection latitude line longitude line 360 deg/1 day = 15 deg/hr
11
special latitude & longitude lines axial tilt of the Earth with respect to the sun is 23° 26′ 21.41″
12
circle – subtends angle of 360° 1° = 60’ (minutes) 1’ = 60” (seconds) nautical mile = distance of 1° latitude distance / degree latitude is constant not true for longitude r e = 6371 km circumference = 2πr e = 40,030 km r e = 6371 km c lat 1° / 360° = C lat / 40,030 km C lat = 40,030 km / 360° = 111 km/°lat = 60 nm/°lat = 69 mi/°lat distance per degree of latitude
13
distance / degree not constant for longitude r e = 6371 km Φ = latitude circumference = 2πr e cosΦ = 40,030km cosΦ r e = 6371 km 1° / 360° = C lon / 40,030km cosΦ C lon = 111 km cosΦ km/°lon distance per degree of longitude ϕ r e cos Φ
14
A B dd xx yy - can use Pythagorean Theorem to obtain accurate distance estimate between two points - accurate for distances around 100 km or less
15
34° 20’ 34° 10’ 120° 10’120° A B A = 34° 20’ = 34° + 20/60° = 34.333° B = 34° 10’ = 34° + 10/60° = 34.167° A - B = 0.166° A =A = B =B = yy
16
34° 20’ 34° 10’ 120° 10’120° A B y = (111 km/ ° lat)(0.166 ° lat) = 18.3 km A =A = B =B = yy
17
120° 10’120° A B = A B =B = xx x = (111*cos(34+15/60) km/°lon)(0.167 °lon) = 15.2 km 34° 15’
18
A B dd xx yy d = ( x 2 + y 2 ) 1/2 = (18.4 2 +15.2 2 ) 1/2 = 23.9 km
19
early Pacific navigation
22
early Atlantic navigation
23
Latitude determination
24
antique navigational instruments
25
horizon North Star latitude using a cross staff
26
sextant
27
using a sextant
28
Gemma Frisius 1508 – 1555 mathematician, cartographer, instrument maker, first to describe how an accurate clock could be used to determine longitude
29
Longitude determination rotation rate = 360 deg in 24 hr = 15 deg per hr 15°
30
Set clock on boat before departing from Greenwich. Longitude determination
31
What is longitude if clock on boat reads 16:18 at local noon? Longitude determination
32
Local noon is behind clock => boat is west of Greenwich Longitude determination
33
time difference = 4+ hr = 4.3 hr longitude difference = 4.3 hr x 15°/hr = 64.5° W 18 60 Longitude determination
35
John Harrison (1693-1776) Clocks for measuring longitude
36
global sea surface temperature from satellite observations
37
Readings for next time (Seafloor): -Read Chapter 4 “Seafloor Features”; article “Emergence of Complex Societies After Sea Level Stabilized”; article “Risk of Rising Sea Level to Population and Land Area”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.