Download presentation
Presentation is loading. Please wait.
2
Face Fixer Compressing Polygon Meshes with Properties Martin Isenburg Jack Snoeyink University of North Carolina at Chapel Hill
3
Polygon Models: Triceratops 356triangles 2266quadrangles 140pentagons 63hexagons 10heptagons 7octagons 2undecagons
4
Polygon Models: Others
5
Faces and Corners: Sandal
6
Fewer polygons less connectivity information Fewer polygons less connectivity information Polygons tend to be planar & convex better geometry prediction Polygons tend to be planar & convex better geometry prediction Better triangle strips Better triangle strips Do not triangulate!
7
Group Structures: Teapot & Cow
8
Group Structures: Others
9
Overview Do not triangulate! Do not triangulate! Connectivity Compression for Manifold Polygon Meshes Connectivity Compression for Manifold Polygon Meshes Compact mesh representations Simple implementation Beyond Faces: Quadrilateral grids Capture Structures! Capture Structures!
10
Previous Work
11
Fast Rendering Fast Rendering Progressive Transmission Progressive Transmission Maximum Compression Maximum Compression
12
Previous Work Fast Rendering Fast Rendering Progressive Transmission Maximum Compression graphics boardmain memory
13
Previous Work Fast Rendering Fast Rendering Progressive Transmission Maximum Compression Triangle Strips [?] Generalized Triangle Mesh[ Deering ] Transparent Vertex Caching[ Hoppe, n VIDIA ]
14
Previous Work Fast Rendering Progressive Transmission Progressive Transmission Maximum Compression Maximum Compression main memorystorage / network
15
Previous Work Fast Rendering Progressive Transmission Progressive Transmission Maximum Compression Progressive Meshes [ Hoppe ] Progressive Forest Split[ Taubin et ] Compressed Progressive Meshes[ Pajarola et ] Progressive Geometry Compression [ Khodakovsky et ]
16
Previous Work Fast Rendering Progressive Transmission Maximum Compression Maximum Compression Topological Surgery [ Taubin, Rossignac ] Triangle Mesh Compression[ Costa, Gotsman ] Edgebreaker[ Rossignac, King et ] Cut-border Machine[ Gumhold, Strasser ]
17
ver 1 (x,y,z) ver 2 (x,y,z) ver 3 (x,y,z) ver n Standard Mesh Representation face 1 1 2 3 4 face 2 3 4 3 face 3 5 2 1 3 face m connectivity n = 10,000 66 KB60 KB n = 100,000 830 KB600 KB n = 1,000,000 10 MB6 MB geometry
18
ver 1 (x,y,z) ver 2 (x,y,z) ver 3 (x,y,z) ver n Standard Mesh Representation face 1 1 2 3 4 face 2 3 4 3 face 3 5 2 1 3 face m nor 1 (x,y,z) nor 2 (x,y,z) nor 3 (x,y,z) nor i tex 1 (u,v) tex 2 (u,v) tex 3 (u,v) tex k col 1 (r,g,b) col 2 (r,g,b) col 3 (r,g,b) col j
19
Face Fixer
21
encoding is a sequence of labels: encoding is a sequence of labels: one label.... per face one label per hole one label per handle labels and fix it all together number of labels = number of edges number of labels = number of edges reverse decoding reverse decoding Face Fixer F4F4 F5F5 R F3F3 LS E HnHn M
22
Encoding
23
F4F4
24
F4F4 F3F3
25
F4F4 F3F3 R
26
F4F4 F3F3 F5F5 R
27
F4F4 F3F3 F5F5 R F5F5
28
F4F4 F3F3 F5F5 R F5F5 R
29
F4F4 F3F3 F5F5 R F5F5 R R
30
Compressing Resulting label sequence: Resulting label sequence: non-uniform label frequencies correlation among subsequent labels Adaptive order-3 arithmetic coding Adaptive order-3 arithmetic coding Compact probability tables Fast bit-operations F4F4 F3F3 F5F5 R F5F5 R F4F4... RR F4F4 R
31
Decoding R
32
R
33
F5F5
34
F5F5
35
R
36
F3F3
37
F4F4
39
+2.0 TG 2.2 2.4 Compression Results Triceratops2.1 Galleon2.6 Cessna2.8 Beethoven2.9 Shark1.7 Cupie2.3 bits vertex model
40
fragmented disks half-disk disk Non-Manifold Meshes (1)
41
Non-Manifold Meshes (2) cut
42
Beyond Faces
43
Extension: Quadrilateral Grids
44
Encoding a Quad Grid right left height
45
Encoding a Quad Grid QG
46
Triceratops1.9-0.2 Galleon2.2-0.4 Beethoven2.6-0.3 Shark1.4-0.3 Teapot1.1-0.6 Trumpet0.6-0.5 bits vertex model Compression with Quad Grids diff
47
Extension: Repeated Patches
48
Structures
49
Extension: Structures
50
case D case B case A case C Super Faces connected by an edge connected by a vertex
51
Encoding a Super Face
53
SF
54
Encoding a Super Face
55
F4F4
56
F4F4 F3F3
57
F4F4 F3F3 R
58
F4F4 F3F3 R F5F5
59
F4F4 F3F3 R F5F5 R
60
F4F4 F3F3 R F5F5 R R
61
F4F4 F3F3 R F5F5 R R F3F3
62
F4F4 F3F3 R F5F5 R R F3F3 R
63
+0.1 +0.2 +0.1 +0.0 +0.1 Compression with Structures bits vertex model diff Triceratops2.4+0.3 Galleon2.7+0.1 Cessna3.5+0.7 Beethoven3.0+0.1 Shark2.0+0.3 Cupie2.3+0.1
64
Summary
65
Summary of Contributions Compress polygonal connectivity Compress polygonal connectivity simpler, more compact, extensions Capture structural information Capture structural information face groupings mesh partitions discontinuity curves Model Libraries Model Libraries “rich” meshes storage / network transmission
66
Current and Future Work Triangle Strip Compression Graphics Interface 2000 Triangle Strip Compression Graphics Interface 2000 Tetrahedral and Hexahedral meshes “cell fixer” Tetrahedral and Hexahedral meshes “cell fixer”
67
Acknowledgements Davis King Jarek Rossignac Mike Maniscalco Stefan Gumhold S 6 Viewpoint Datalabs
68
Thank you.
70
Regular Irregular Connectivity Re-meshable Re-meshable Bunnies, Horses, various Roman Statues, … Highly detailed, dense, scanned data sets Not Re-meshable Not Re-meshable Cessnas, Spanish Galleons, Sandals, … Careful designed meshes with sharp features CAD models, Viewpoint models
71
Predictive Coding good not convex bad not planar bad
72
Attaching Geometry
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.