Presentation is loading. Please wait.

Presentation is loading. Please wait.

ICN’s The n-D hypercube (n-cube) contains 2^n nodes (processors).

Similar presentations


Presentation on theme: "ICN’s The n-D hypercube (n-cube) contains 2^n nodes (processors)."— Presentation transcript:

1 ICN’s The n-D hypercube (n-cube) contains 2^n nodes (processors).
The nodes are neighbors in the n-cube iff their end bit binary addresses differ in a single bit

2 Neighbor nodes Two nodes are neighbors in the n-cube iff their end bit binary addresses differ by a single bit

3 Hypercubes Hypercubes are designed recursively How ?

4 2 - Cube 2^2 = 4 nodes 00 01 10 11

5 3 - Cube 2^3 = 8 nodes 00 01 00 01 10 11 10 11

6 3 - Cube 2^3 = 8 nodes 100 101 000 001 110 111 010 011

7 4 - Cube 2^4 = 16 nodes 100 101 100 101 000 001 001 000 110 110 111 111 011 010 010 011

8 4 - Cube 2^4 = 16 nodes 100 101 100 101 000 001 001 000 110 110 111 111 011 010 010 011

9 100 110 010 000 101 111 110 100 001 011 101 000 010 111 001 011

10 100 110 010 000 101 111 110 100 001 011 101 000 010 111 001 011

11 0100 0110 0010 0000 0101 0111 1110 1100 0001 0011 1101 1000 1010 1111 1001 1011

12 4 - Cube 0110 0100 0101 0000 0010 0111 0010 0011

13 Reduced hypercube 100 101 000 001 110 111 010 011

14 Folded hypercube (4) 100 101 000 001 110 111 010 011

15 3-cube routing: data exchange
The nodes are coded as XYZ 100 101 000 001 110 111 010 011

16 Routing by inverting X The nodes are coded as XYZ 100 101 000 001 110
111 010 011

17 Routing by inverting Y The nodes are coded as XYZ 100 101 000 001 110
111 010 011

18 Routing by inverting Z The nodes are coded as XYZ 100 101 000 001 110
111 010 011

19 Hemming distance The shortest path , between nodes, is determined by
the Hamming distance. 100 101 000 001 110 111 010 011

20 Hemming distance XOR (source and destination) and count the 1’s 100
101 000 001 110 111 010 011

21 Examples 010 -> 111 = 100 101 000 001 110 111 010 011

22 Examples 010 -> 111 = 010 XOR 111 = 101 = 2 hops 100 101 000 001
110 111 010 011

23 Examples 010 -> 110 = 100 101 000 001 110 111 010 011

24 Examples 010 -> 110 = 010 XOR 110 = 100 = 1 hops 100 101 000 001
111 010 011

25 Examples 010 -> 101 = 010 XOR 010 = 111 = 3 hops 100 101 000 001
110 111 010 011

26 Examples 010 -> 101 = 010 XOR 010 = 111 = 3 hops 100 101 000 001
110 111 010 011

27 Hypercube The hypercube can emulate (simulate) other ICN’s
The hypercube is a general purpose or universal ICN

28 Embedding a linear array
How can we embed other ICN’s into a hypercube ?

29 Algorithm Bits must differ by a single bit
Use the binary Reflected Gray Code

30 Binary Reflected Code RGC(n); n-bit binary Reflected Gray Code
RGC(n) = [ 0 . RGC(n-1), 1 . RGC (n-1) ] -1

31 1-cube/2-node array or 1 - Cube 0 1
RGC(n); n-bit binary Reflected Gray Code RGC(n) = [ 0 . RGC(n-1), 1 . RGC^{-1}(n-1) ] = [ 0 . RGC(1-1), 1 . RGC^{-1}(1-1) ] = [ 0. RGC(0) , 1 . RGC^{-1}(0) ] = [ ] or 1 - Cube

32 2-cube/4-node array 00 01 10 2- cube 11
RGC(n); n-bit binary Reflected Gray Code RGC(2) = [ 0 . RGC(2-1), 1 . RGC^{-1}(2-1) ] = [ 0 . RGC(1) , 1 . RGC^{-1}(1) ] = [ 0 . ( 0,1) , 1 . (1,0) ] = [ 00, , 11, 10 ] 00 10 01 11 2- cube

33 Linear array; n = 3 RGC(n); n-bit binary Reflected Gray Code
RGC(3) = [ 0 . RGC(3-1), 1 . RGC^{-1}(3-1) ] = [ 0 . RGC(2) , 1 . RGC^{-1}(2) ] = [ 0.(00,01,11,10 ) , 1.(10,11,01,00) ] = [000,001,011,010,110,111,101,100 Addresses ARRAY = HYPERCUBE =

34 Linear array - Hypercube
100 101 000 001 110 111 010 011

35 Linear array - Hypercube
100 101 000 001 110 111 010 011

36 Linear array - Hypercube
100 101 000 001 110 111 010 011

37 Linear array - Hypercube
100 101 000 001 110 111 010 011

38 Linear array - Hypercube
100 101 000 001 110 111 010 011

39 Linear array - Hypercube
100 101 000 001 110 111 010 011

40 Linear array - Hypercube
100 101 000 001 110 111 010 011

41 3-Cube/16-node array 100 101 000 001 3-cube 110 111 010 011
HYPERCUBE = 100 101 000 001 3-cube 110 111 010 011

42 Embed an 8-leave Binary Tree into a 3-Cube

43 Embed an 8-leave Binary Tree into a 3-Cube
000 000 000 1. Choose the address of the parent to be the address of the left child.

44 Embed an 8-leave Binary Tree into a 3-Cube
000 000 000 010 100 110 Choose the address of the parent to be the address of the left child.

45 Embed an 8-leave Binary Tree into a 3-Cube
000 000 100 Height = n = 4 Nodes = 2^n-1 000 010 100 110 Choose the address of the parent to be the address of the left child.

46 Embed an 8-leave Binary Tree into a 3-Cube
000 Level- 3 000 100 Level- 2 000 010 100 110 Level- 1 Level- 0

47 Create Tables (connection) for each level
000 Level- 3 000 100 Level- 2 000 010 100 110 Level- 1 Level- 0

48 Table: Level -1 Level- 3 Level- 2 Level- 1 Level- 0 001 ->> 000
100 Level- 2 000 010 100 110 Level- 1 Level- 0 001 ->> 000 011 ->> 010

49 Table: Level -1 Level- 3 Level- 2 Level- 1 Level- 0 001 ->> 000
100 Level- 2 000 010 100 110 Level- 1 Level- 0 001 ->> 000 011 ->> 010 101 ->> 100 111 ->> 110

50 Table: Level -2 Level- 3 Level- 2 Level- 1 Level- 0 010 ->> 000
100 Level- 2 000 010 100 110 Level- 1 Level- 0 010 ->> 000 110 ->> 100

51 Table: Level -3 Level- 3 Level- 2 Level- 1 Level- 0 100 ->> 000
010 100 110 Level- 1 Level- 0 100 ->> 000

52 Draw: Level - 1 001 ->> 000 011 ->> 010 100 101
011 ->> 010 100 101 101 ->> 100 111 ->> 110 000 001 110 111 010 011

53 Draw: Level - 2 001 ->> 000 011 ->> 010 100 101
011 ->> 010 100 101 101 ->> 100 111 ->> 110 000 001 010 ->> 000 110 ->> 100 110 111 010 011

54 Draw: Level - 3 001 ->> 000 011 ->> 010 100 101
011 ->> 010 100 101 101 ->> 100 111 ->> 110 000 001 010 ->> 000 110 ->> 100 110 111 100 ->> 000 010 011

55 8-leave Tree/3-cube 100 101 000 001 110 111 010 011

56 8-leave Tree/3-cube 000 001 011 010 100 101 111 110


Download ppt "ICN’s The n-D hypercube (n-cube) contains 2^n nodes (processors)."

Similar presentations


Ads by Google