Download presentation
1
ICN’s The n-D hypercube (n-cube) contains 2^n nodes (processors).
The nodes are neighbors in the n-cube iff their end bit binary addresses differ in a single bit
2
Neighbor nodes Two nodes are neighbors in the n-cube iff their end bit binary addresses differ by a single bit
3
Hypercubes Hypercubes are designed recursively How ?
4
2 - Cube 2^2 = 4 nodes 00 01 10 11
5
3 - Cube 2^3 = 8 nodes 00 01 00 01 10 11 10 11
6
3 - Cube 2^3 = 8 nodes 100 101 000 001 110 111 010 011
7
4 - Cube 2^4 = 16 nodes 100 101 100 101 000 001 001 000 110 110 111 111 011 010 010 011
8
4 - Cube 2^4 = 16 nodes 100 101 100 101 000 001 001 000 110 110 111 111 011 010 010 011
9
100 110 010 000 101 111 110 100 001 011 101 000 010 111 001 011
10
100 110 010 000 101 111 110 100 001 011 101 000 010 111 001 011
11
0100 0110 0010 0000 0101 0111 1110 1100 0001 0011 1101 1000 1010 1111 1001 1011
12
4 - Cube 0110 0100 0101 0000 0010 0111 0010 0011
13
Reduced hypercube 100 101 000 001 110 111 010 011
14
Folded hypercube (4) 100 101 000 001 110 111 010 011
15
3-cube routing: data exchange
The nodes are coded as XYZ 100 101 000 001 110 111 010 011
16
Routing by inverting X The nodes are coded as XYZ 100 101 000 001 110
111 010 011
17
Routing by inverting Y The nodes are coded as XYZ 100 101 000 001 110
111 010 011
18
Routing by inverting Z The nodes are coded as XYZ 100 101 000 001 110
111 010 011
19
Hemming distance The shortest path , between nodes, is determined by
the Hamming distance. 100 101 000 001 110 111 010 011
20
Hemming distance XOR (source and destination) and count the 1’s 100
101 000 001 110 111 010 011
21
Examples 010 -> 111 = 100 101 000 001 110 111 010 011
22
Examples 010 -> 111 = 010 XOR 111 = 101 = 2 hops 100 101 000 001
110 111 010 011
23
Examples 010 -> 110 = 100 101 000 001 110 111 010 011
24
Examples 010 -> 110 = 010 XOR 110 = 100 = 1 hops 100 101 000 001
111 010 011
25
Examples 010 -> 101 = 010 XOR 010 = 111 = 3 hops 100 101 000 001
110 111 010 011
26
Examples 010 -> 101 = 010 XOR 010 = 111 = 3 hops 100 101 000 001
110 111 010 011
27
Hypercube The hypercube can emulate (simulate) other ICN’s
The hypercube is a general purpose or universal ICN
28
Embedding a linear array
How can we embed other ICN’s into a hypercube ?
29
Algorithm Bits must differ by a single bit
Use the binary Reflected Gray Code
30
Binary Reflected Code RGC(n); n-bit binary Reflected Gray Code
RGC(n) = [ 0 . RGC(n-1), 1 . RGC (n-1) ] -1
31
1-cube/2-node array or 1 - Cube 0 1
RGC(n); n-bit binary Reflected Gray Code RGC(n) = [ 0 . RGC(n-1), 1 . RGC^{-1}(n-1) ] = [ 0 . RGC(1-1), 1 . RGC^{-1}(1-1) ] = [ 0. RGC(0) , 1 . RGC^{-1}(0) ] = [ ] or 1 - Cube
32
2-cube/4-node array 00 01 10 2- cube 11
RGC(n); n-bit binary Reflected Gray Code RGC(2) = [ 0 . RGC(2-1), 1 . RGC^{-1}(2-1) ] = [ 0 . RGC(1) , 1 . RGC^{-1}(1) ] = [ 0 . ( 0,1) , 1 . (1,0) ] = [ 00, , 11, 10 ] 00 10 01 11 2- cube
33
Linear array; n = 3 RGC(n); n-bit binary Reflected Gray Code
RGC(3) = [ 0 . RGC(3-1), 1 . RGC^{-1}(3-1) ] = [ 0 . RGC(2) , 1 . RGC^{-1}(2) ] = [ 0.(00,01,11,10 ) , 1.(10,11,01,00) ] = [000,001,011,010,110,111,101,100 Addresses ARRAY = HYPERCUBE =
34
Linear array - Hypercube
100 101 000 001 110 111 010 011
35
Linear array - Hypercube
100 101 000 001 110 111 010 011
36
Linear array - Hypercube
100 101 000 001 110 111 010 011
37
Linear array - Hypercube
100 101 000 001 110 111 010 011
38
Linear array - Hypercube
100 101 000 001 110 111 010 011
39
Linear array - Hypercube
100 101 000 001 110 111 010 011
40
Linear array - Hypercube
100 101 000 001 110 111 010 011
41
3-Cube/16-node array 100 101 000 001 3-cube 110 111 010 011
HYPERCUBE = 100 101 000 001 3-cube 110 111 010 011
42
Embed an 8-leave Binary Tree into a 3-Cube
43
Embed an 8-leave Binary Tree into a 3-Cube
000 000 000 1. Choose the address of the parent to be the address of the left child.
44
Embed an 8-leave Binary Tree into a 3-Cube
000 000 000 010 100 110 Choose the address of the parent to be the address of the left child.
45
Embed an 8-leave Binary Tree into a 3-Cube
000 000 100 Height = n = 4 Nodes = 2^n-1 000 010 100 110 Choose the address of the parent to be the address of the left child.
46
Embed an 8-leave Binary Tree into a 3-Cube
000 Level- 3 000 100 Level- 2 000 010 100 110 Level- 1 Level- 0
47
Create Tables (connection) for each level
000 Level- 3 000 100 Level- 2 000 010 100 110 Level- 1 Level- 0
48
Table: Level -1 Level- 3 Level- 2 Level- 1 Level- 0 001 ->> 000
100 Level- 2 000 010 100 110 Level- 1 Level- 0 001 ->> 000 011 ->> 010
49
Table: Level -1 Level- 3 Level- 2 Level- 1 Level- 0 001 ->> 000
100 Level- 2 000 010 100 110 Level- 1 Level- 0 001 ->> 000 011 ->> 010 101 ->> 100 111 ->> 110
50
Table: Level -2 Level- 3 Level- 2 Level- 1 Level- 0 010 ->> 000
100 Level- 2 000 010 100 110 Level- 1 Level- 0 010 ->> 000 110 ->> 100
51
Table: Level -3 Level- 3 Level- 2 Level- 1 Level- 0 100 ->> 000
010 100 110 Level- 1 Level- 0 100 ->> 000
52
Draw: Level - 1 001 ->> 000 011 ->> 010 100 101
011 ->> 010 100 101 101 ->> 100 111 ->> 110 000 001 110 111 010 011
53
Draw: Level - 2 001 ->> 000 011 ->> 010 100 101
011 ->> 010 100 101 101 ->> 100 111 ->> 110 000 001 010 ->> 000 110 ->> 100 110 111 010 011
54
Draw: Level - 3 001 ->> 000 011 ->> 010 100 101
011 ->> 010 100 101 101 ->> 100 111 ->> 110 000 001 010 ->> 000 110 ->> 100 110 111 100 ->> 000 010 011
55
8-leave Tree/3-cube 100 101 000 001 110 111 010 011
56
8-leave Tree/3-cube 000 001 011 010 100 101 111 110
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.