Presentation is loading. Please wait.

Presentation is loading. Please wait.

High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.

Similar presentations


Presentation on theme: "High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute."— Presentation transcript:

1 High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

2 X-Galactic/Ultra-high energy (  >10 19 eV)

3 Cosmic accelerators Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter

4 UHE, >10 10 GeV, CRs 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2  sr Ground array Fluorescence detector Auger: 3000 km 2

5 Composition HiRes 2005 Auger 2010 HiRes 2010 [Wilk & Wlodarczyk 10]

6 Anisotropy Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [EW, Fisher & Piran 97] Biased (  source ~  gal for  gal >  gal ) [Kashti & EW 08] Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Repeater absence  N s >N 2  n>10 -4 /Mpc 3 Larger (27->69) sample: Aniso. @ 98.5% CL Correlation with AGN? - Signal gone - Even if there = LSS [Foteini et al. 11] [Auger coll. 08]

7 Composition-Anisotropy connection Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z J p (E/Z)>=J Z (E/Z) + Note: p(E/Z) propagation = Z(E) propagation  Anisotropy of Z at 10 19.7 eV implies Stronger aniso. signal (due to p) at (10 19.7 /Z) eV ! Not observed!  No high Z at 10 19.7 eV. [Lemoine & EW 09]

8 [EW 1995; Bahcall & EW 03] [Katz & EW 09]  2 (dN/d  ) Observed =  2 (dQ/d  ) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/d  ~(1+z) m  -  >10 19.3 eV: consistent with protons,  2 (dQ/d  ) =0.5(+-0.2) x 10 44 erg/Mpc 3 yr + GZK  2 (dQ/d  ) ~Const.: Consistent with shock acceleration [Reviews: Blandford & Eichler 87; EW 06 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(  2 dQ/d  ) [erg/Mpc 2 yr]

9 G-XG Transition at ~10 18 eV? @ 10 18 eV: Fine tuning [Katz & EW 09] Inconsistent spectrumG cutoff @ 10 19 eV

10 The 10 20 eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Lovelace 76; EW 95, 04; Norman et al. 95]

11 What do we know about >10 19 eV CRs? J(>10 11 GeV)~1 / 100 km 2 year 2  sr Most likely X-Galactic (R L =  /eB=40  p,20 kpc) (An)isotropy: 2 , consistent with LSS Composition? HiRes- p, Auger- becoming heavier(?), Anisotropy suggests p Production rate & spectrum: protons,  2 (dQ/d  ) ~0.5(+-)0.2 x 10 44 erg/Mpc 3 yr + GZK No “ repeaters ” : N source >N CR 2  n(@ 10 19.7 eV) > 10 -4 /Mpc 3 Acceleration (expanding flow): Confinement  L>L B >10 12 (  2 /  ) (  /Z 10 20 eV) 2 L sun Synch. losses   > 10 2.5 (L 52 ) 1/10 (  t/10ms) -1/5 !! No L>10 12 L sun at d<d GZK  Transient Sources

12 UHECR sources: Suspects Constraints: - L>10 12 (  2 /  ) L sun,  > 10 2.5 (L 52 ) 1/10 (  t/10ms) -1/5 -  2 (dQ/d  ) ~10 43.7 erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources Gamma-ray Bursts (GRBs)  L  ~ 10 19 L Sun >10 12 (  2 /  ) L sun = 10 17 (  / 10 2.5 ) 2 L sun   ~ 10 2.5 (L 52 ) 1/10 (  t/10ms) -1/5  2 (dQ/d  )  ~ 10 53 erg*10 -9.5 /Mpc 3 yr = 10 43.5 erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: * “ Hidden ” (proton only) AGN * L~ 10 14 L Sun,  t~1month flares If e - accelerated: X/  observations  rare L>10 17 L sun [Blandford 76; Lovelace 76] [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08] [EW & Loeb 09]

13 A comment on transients Number density of active flares (nx  t) Caveats: Inefficient e-acceleration Flares turn on at z<<1 [EW & Loeb 09]

14 Two comments “ Q ,MeV,GRB ~10 -2 Q UHECR ” - Discrepancy due mainly to Assuming UHECRs X-Galactic above ~10 18 eV (instead of ~ 10 19 eV) Magnetars? [e.g. Wick et al. 04 ; Berezinsky 08; Eichler et al 10] [Hillas 84; Arons 03]

15 The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [EW 95; Miralda-Escude & EW 96, EW 04]

16 GRB Model Predictions [Miralda-Escude & EW 96]

17 GRBs & UHECRs: Predictions CR experiments: - Few narrow spectrum sources above 3x10 20 eV - Difficult to check, even with Auger HE experiments ~10 (100TeV events)/Gton/yr Accessible to IceCube, Km3Net [Miralda-Escude & EW 96] [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

18 GRB: 10 19 L Sun, M BH ~1M sun, M~1M sun /s,  ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~10 0.5 Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007]

19 Particle acceleration mechanism: (Mildly) Relativistic Collisionless Shocks?

20 Why Collisionless shock? p  p Relativistic shock: (n’=  n) ss U B /nm p c 2 <<1 (eg ~10 -9 for ISM)

21 Fermi shock acceleration Test particle, elastic scattering, small momentum change: “ diffusion ” v/c<<1: p=2 (strong shock) v/c~1, Assuming Isotropic diffusion Simulations: p(  >>1)=2.2+-0.2 Analytic approximation: p(  >>1)=20/9 Open Q ’ s: Relativistic- p depends on diffusion form Self-consistent (particles + EM fields) theory [Krimsky 77; Axford, Leer & Skadron 78; Blandford & Eichler 78] v~c/3 ss v~c Energetic particle [Bednarz & Ostrowski 98; Kirk et al. 00; Ellison 05; Meli & Quenby 06] [Keshet & EW 05, Keshet 06 ]

22 Plasma simulations: 3D 3D e + e - plasma,  =15 “ piston ” Shock forms, width ~10 c/  p, Reach  B ~0.01, But: >>1/  p field decay? Particle acceleration? Relevance for e/p plasma? e/p (m p /m e =16) plasma simulations: Study physical process, but Do not reach shock formation. [Nishikawa et al. 03; Fredriksen et al. 04; Hededal et al. 04] [Spitkovsky 06] 200c/  p 40c/  p

23 Plasma simulations: Large 2D e + e –  =15 “ piston ”, transverse ~100 c/  p,  p t~10 4  BParticles  p t/10 3 =2,5,13Non-thermal (  >>15) tail B scale grows,  B grows to 0.01However: Note  2 ! Cooling = no  >80 No steady state @  p t~10 4 [Sironi & Spitkovsky 09] [Keshet et al. 09]

24 Simulations: What have we learned? 2D e + e - plasma,  =15 “ piston ” : Shock forms, width ~10 c/  p B scale grows,  B grows to 0.01 Growth associated with non-thermal particles No steady state @  p t~10 4 Open: Does B survive to  p t~10 9 ? Particle acceleration to >  2 ? e + e - = e-p plasma? 2D=3D?  Numerics unlikely to directly resolve open Qs. Provides input/tests for analytic studies.

25 High energy neutrinos

26 High energy  ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse)  physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources [10kt @ 1MeV  1Gton @ TeV,  TeV /  MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp   ’s  ’s]  physics Cosmic accelerator: Open questions  Prime scientific motivation Observed properties  Detector characteristics

27 HE  : UHECR bound p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics For all known sources,   p <1: If X-G p ’ s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

28 Bound implications: I. AGN models BBR05 “Hidden” ( only) sources Violating UHECR bound

29 Bound implications: II. experiments 2 flavors, No ”hidden” sources! Fermi

30 AMANDA & IceCube Completed

31 The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

32 Bound implications: II. experiments Radio Cerenkov

33 Transient sources: GRB ’ s If: Baryonic jet Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

34 FERMI: GRB  & f p  Prompt ~1MeV synch  f p  ~   (100MeV)~1   (100MeV)~1  ~300 Prompt GeV photons    (100MeV) >300, no ’ s ?? Is  >>300,   (100MeV)<<1? 95% of LGRB not detected by LAT For bright GRBs, non detection implies: F(>100MeV)/F(1MeV) ~1 ? Caution in inferring  min : - No exponential cutoff at   >1, rather f ~1/ - GeV & MeV emission likely originate from different radii (HE delay), (   =1)~R [Abdo et al. 09; Greiner et al. 09; Dermer 10] [Guetta et al. 10 J. McEnery Talk]

35 GRB  ’ s Internal collisions at R 0  “ residual ” coll. @ R>> R 0 E(R)~1/R q with q<2/3 f ~1/ q for > (   =1,R= R 0 ) May account for: prompt optical (avoid self-abs.) prompt GeV (avoid pair prod.) GRB080916c HE delays   ~300 [Li & EW 08] [Li 10]

36 GRB ’ s: IC40 constraints No ’ s for 117 GRBs (~1 expected, at 90%CL <2) IC is achieving relevant sensitivity

37 What will we learn? Detection: highly informative - Identify CR source - Strong support: Baryonic jets, p acceleration, dissipation by collisionless shocks - Fundamental/ physics Non-detection: ambiguous - 10/km 2 yr is an order of mag. (proportional to  x dQ/dE x f  ) - Significant non-detection (<<10/km 2 yr, <<1 /100GRB) Poynting jet (no p?) or Dissipation mechanism (eg no p acceleration to relevant E) or Radiation mechanism (  f  <<0.2)

38 - physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV Optimistic (very): Combining E E 0 flavor measurements may constrain flavor mixing [CPV, Sin  13 Cos  ] [EW & Bahcall 97] [Rachen & Meszaros 98; Kashti & EW 05] [EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & EW 05; Winter 10]

39 Summary UHE,  >10 19 eV, CRs - Anisotropy (2  ) consistent with LSS, supports protons - Likely X-Galactic protons,  2 (dQ/d  ) ~10 43.7 erg/Mpc 3 yr - No “ repeaters ” : N source >N CR 2  n(@ 10 19.7 eV) > 10 -4 /Mpc 3 - Acceleration: L>L B >10 12 (  2 /  ) L sun,  > 10 2.5 (L 52 ) 1/10 (  t/10ms) - 1/5  Transient Sources, GRBs / L> 10 50 erg/s AGN flares? HE ’ s: IceCube ’ s sensitivity meets minimum requirements for detection of XG sources Detection of a handful of ’ s may resolve outstanding puzzles: - Identify UHECR (& G-CR) sources - Resolve open “ cosmic-accelerator ” physics Q ’ s (related to BH-jet systems, particle acc., rad. mechanisms) - Constrain physics, LI, WEP - The unexpected? Coordinated wide field EM transient monitoring crucial ( “ Multi-messenger ” )


Download ppt "High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute."

Similar presentations


Ads by Google