Download presentation
Presentation is loading. Please wait.
1
Most slides from http://www.autonlab.org/tutorials/ Expectation Maximization (EM) Northwestern University EECS 395/495 Special Topics in Machine Learning
2
Most slides from http://www.autonlab.org/tutorials/ Outline Objective Simple example Complex example
3
Most slides from http://www.autonlab.org/tutorials/ Objective Learning with missing/unobservable data J B E A E B A J 1 1 1 0 1 1 0 0 … Maximum likelihood
4
Most slides from http://www.autonlab.org/tutorials/ Objective Learning with missing/unobservable data J B E A E B A J 1 1 ? 1 1 0 ? 1 0 0 ? 0 … Optimize what?
5
Most slides from http://www.autonlab.org/tutorials/ Outline Objective Simple example Complex example
6
Most slides from http://www.autonlab.org/tutorials/ Simple example
7
Most slides from http://www.autonlab.org/tutorials/ Maximize likelihood
8
Most slides from http://www.autonlab.org/tutorials/ Same Problem with Hidden Information Score GradeHidden Observable
9
Most slides from http://www.autonlab.org/tutorials/ Same Problem with Hidden Information S G
10
Most slides from http://www.autonlab.org/tutorials/ Same Problem with Hidden Information S G
11
Most slides from http://www.autonlab.org/tutorials/ EM for our example
12
Most slides from http://www.autonlab.org/tutorials/ EM Convergence
13
Most slides from http://www.autonlab.org/tutorials/ Generalization X: observable data(score = {h, c, d}) z: missing data(grade = {a, b, c, d}) : model parameters to estimate ( ) E: given, compute the expectation of z M: use z obtained in E step, maximize the likelihood with respect to
14
Most slides from http://www.autonlab.org/tutorials/ Outline Objective Simple example Complex example
15
Most slides from http://www.autonlab.org/tutorials/ Gaussian Mixtures
16
Most slides from http://www.autonlab.org/tutorials/ Gaussian Mixtures Know –Data – - Don’t know –Data label Objective – -
17
Most slides from http://www.autonlab.org/tutorials/ The GMM assumption
18
Most slides from http://www.autonlab.org/tutorials/ The GMM assumption
19
Most slides from http://www.autonlab.org/tutorials/ The GMM assumption
20
Most slides from http://www.autonlab.org/tutorials/ The GMM assumption
21
Most slides from http://www.autonlab.org/tutorials/ The data generated Coordinates Label
22
Most slides from http://www.autonlab.org/tutorials/ Computing the likelihood
23
Most slides from http://www.autonlab.org/tutorials/ EM for GMMs
24
Most slides from http://www.autonlab.org/tutorials/ EM for GMMs
25
Most slides from http://www.autonlab.org/tutorials/ EM for GMMs
26
Most slides from http://www.autonlab.org/tutorials/
34
Generalization X: observable data z: unobservable data : model parameters to estimate E: given, compute the “expectation” of z M: use z obtained in E step, maximize the likelihood with respect to
35
Most slides from http://www.autonlab.org/tutorials/ Exponential family –Yes: normal, exponential, beta, Bernoulli, binomial, multinomial, Poisson… –No: Cauchy and uniform EM using sufficient statistics –S1: computing the expectation of the statistics –S2: set the maximum likelihood For distributions in exponential family
36
Most slides from http://www.autonlab.org/tutorials/ What EM really is Maximize expected log likelihood E-step: Determine the expectation M-step: Maximize the expectation above with respect to X: observable data z: missing data
37
Most slides from http://www.autonlab.org/tutorials/ Final comments Deal with missing data/latent variables Maximize expected log likelihood Local minima
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.