Download presentation
Presentation is loading. Please wait.
1
Regularization with Singular Energies Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center for Nonlinear Science (CeNoS) Westfälische Wilhelms-Universität Münster
2
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 In many inverse and imaging problems, a- priori information on the solution (or its interesting parts) needs to introduced in an effective way, e.g. - smoothness away from edges (images) - (almost) piecewise constant (material densities with interfaces) - sparsity in some basis / frame (MRI,.. ), or in space (deconvolution, EEG/MEG,..) Introduction
3
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Nanoscopy with optical (4pi) techniques, cell imaging: sparsity in space © Andreas Schönle, MPI Göttingen Examples
4
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 PET / CT imaging of mouse heart coronal sagittaltransverse © Dept of Nuclear Medicine / SFB 658, WWU Münster Examples
5
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 MRI images for EEG/MEG modelling T1 PD © Institute for BioSystemAnalysis, WWU Münster Anisotropic Structures essential for field simulations and dipole source reconstructions in MEG Examples
6
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 MRI images for EEG/MEG modelling Baillet, Mosher, Leahy, IEEE Signal Processing Magazine, 2001, 18(6), pp. 14-30. Examples
7
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Aerial images of buildings: strong anisotropy © Aerowest GmbH Münster Visualization Project, Dept. of Computer Science, WWU Examples
8
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 A-priori information or desired structures have to be incorporated into reconstruction methods and regularization schemes One possibility are singular energies (not differentiable and not strictly convex), see also various speakers at AIP 07: Daubechies, Candes, Fornasier, Saab, Leitao, Mizera, Kindermann, Lorenz, Ramlau, Rauhut, Zhariy, Ring, Villegas, Klann, … Introduction
9
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Classical regularization schemes for inverse problems and imaging are based on linear smoothing = quadratic energy functionals Example: Tikhonov regularization for linear operator equations A u = f Linear Regularization ¸ 2 k A u ¡ f k 2 + 1 2 k L u k 2 ! m i n u
10
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 These energy functionals are strictly convex and differentiable – standard tools from analysis and computation (Newton methods etc.) can be used Disadvantage: possible oversmoothing, seen from first-order optimality condition Tikhonov yields Hence u is in the range of (L*L) -1 A* Linear Tikhonov L ¤ L u = ¡ ¸ A ¤ ( A u f )
11
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Classical example: integral equation of the first kind, regularization in L 2 (L = Id), A = Fredholm integral operator with kernel k Smoothness of regularized solution is determined by smoothness of kernel For typical convolution kernels like Gaussians, u is analytic ! Deblurring u ( x ) = ¸ ZZ k ( y ; x )( ¡ k ( y ; z ) u ( z ) + f ( z )) d y d z
12
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Classical image smoothing: data in L 2 (A = Id), L = gradient (H 1 -Seminorm) On a reasonable domain, standard elliptic regularity implies Reconstruction contains no edges, blurs the image (with Green kernel) Image Smoothing ¡ ¢ u + ¸ u = ¸f u 2 H 2 ( ), ! C ( )
13
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Let A be an operator on (basis repre- sentation of a Hilbert space operator, wavelet) Penalization by squared norm (L = Id) Optimality condition for components of u Decay of components determined by A*. Even if data are generated by sparse signal (finite number of nonzeros), reconstruction is not sparse ! Sparse Reconstructions ? ` 2 ( Z ) u k = ¸ ( A ¤ ( ¡ A u + f )) k
14
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Error estimates for ill-posed problems can be obtained only under stronger conditions (source conditions) cf. Groetsch, Engl-Hanke-Neubauer, Colton-Kress, Natterer. Nonlinear: Engl-Kunisch-Neubauer. Equivalent to u being minimizer of Tikhonov functional with some data For many inverse problems unrealistic due to extreme smoothness assumptions Error Estimates 9 w:u = A ¤ w
15
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Condition can be weakened to cf. Neubauer et al (algebraic), Hohage (logarithmic), Mathe-Pereverzyev (general). Advantage: more realistic conditions Disadvantage: Estimates get worse with Error Estimates 9 v:u = ¾ ( A ¤ A ) v
16
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Analogous (local) theory for nonlinear inverse problems (as long as forward operator is Frechet differentiable, and additional technical conditions satisfied) Nonlinear Problems
17
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Image smoothing: try nonlinear energy for penalization: Optimality condition is nonlinear PDE r is strictly convex and smooth: usual smoothing behaviour / elliptic regularity r is not convex: problem not well-posed Try borderline case: singular energy Singular Energies ¡ r ¢ (( r r )( r u )) + ¸ u = ¸f R r ( r u )
18
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Simplest choice yields total variation method ( Rudin-Osher-Fatemi 89, Acar- Vogel 93, Chambolle-Lions 96, …) Singular energy: nondifferentiable, not strictly convex „ “ Total Variation Methods r ( p ) = j p j j u j BV = Z j r u j d x j u j BV = sup g 2 C 1 0 ; k g k 1 · 1 Z u ( r ¢ g ) d x
19
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 A operator on Singular energy Regularized minimization Daubechies et al 04-07, Loubes 06/07, Ramlau, Maass, Klann 07, … Sparsity ` 2 ( Z ) \ ` 1 ( Z ) J ( u ) = k u k 1 = P j u k j ¸ 2 k A u ¡ f k 2 + J ( u ) ! m i n u
20
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Optimality condition for components of u A* is the adjoint operator to,hence Implies sparsity of u, since Sparsity s i gn ( u k ) = ¸ A ¤ ( f ¡ A u ) k s i gn ( u k ) 2 ` 2 ( Z ) ` 2 ( Z ) k s i gn ( u )k 2 = num b ero f nonzerocomponen t s
21
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 For A being the identity, the result is well- known soft-thresholding: Donoho, Johnstone 94, Chambolle, DeVore, Lee, Lucier 98, … implies Sparsity / Thresholding u k = 8 < : f k ¡ 1 ¸ f k > 1 ¸ f k + 1 ¸ f k < ¡ 1 ¸ 0 e l se s i gn ( u k ) + ¸ u k = ¸f k
22
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 ROF model for denoising Rudin-Osher Fatemi 89/92, Chambolle-Lions 96, Scherzer-Dobson 96, Meyer 01,… ROF Model ¸ 2 Z ( u ¡ f ) 2 + j u j BV ! m i n u 2 BV
23
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Optimality condition for ROF denoising Dual variable p enters – related to mean curvature of edges for total variation Subdifferential of convex functional ROF Model p + ¸ u = ¸f ; p 2 @ j u j BV @ J ( u ) = f p 2 X ¤ j 8 v 2 X : J ( u ) + h p ; v ¡ u i · J ( v )g
24
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 ROF Model Reconstruction (code by Jinjun Xu) cleannoisy ROF
25
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 ROF model denoises cartoon images resp. computes the cartoon of an arbitrary image, natural spatial multi-scale decomposition by varying ROF Model
26
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Bachmayr, 2007 Numerical Differentiation with TV
27
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Methods with singular energies have great potential, but still some problems: - difficult to analyze and to obtain error estimates - systematic errors (like loss of contrast) - computational challenges - strong bias – how to incorporate uncertain a-priori structures (adaptively) ? Singular Energies
28
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Berkels, mb, Droske, Nemitz, Rumpf 06 Systematic Errors and Bias
29
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 ROF minimization loses contrast, total variation of the reconstruction is smaller than total variation of clean image. Image features left in residual f-u g, clean f, noisy u, ROF f-u mb-Gilboa-Osher-Xu 06 Loss of Contrast
30
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Idea: add the residual („noise“) back to the image to pronounce the features decreased too much. Then do ROF again. Iterative procedure Osher-mb-Goldfarb-Xu-Yin 04 Iterative Refinement u k = argm i n u · ¸ 2 Z ( u ¡ f ¡ v k ¡ 1 ) 2 + j u j BV ¸ v k = v k ¡ 1 + ( f ¡ u k ) ; v 0 = 0
31
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Improves reconstructions significantly Iterative Refinement & ISS
32
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Iterative Refinement & ISS
33
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Works for inverse problems in a similar way Osher-mb-Goldfarb-Xu-Yin 04 Iterative Refinement u k = argm i n u · ¸ 2 k A u ¡ f ¡ v k ¡ 1 k 2 + J ( u ) ¸ v k = v k ¡ 1 + ( f A u k ) ; v 0 = 0
34
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Observation from optimality condition Implies relation between decomposed residual and subgradient Iterates determined by equivalent minimization of Iterative Refinement & ISS p k = ¸ A ¤ v k ¸ 2 k A u ¡ f k 2 + J ( u ) J ( u k ¡ 1 ) ¡ ¸ h v k ¡ 1 ; A u A u k ¡ 1 i = ¸ 2 k A u ¡ f k 2 + J ( u ) J ( u k ¡ 1 ) ¡ h p k ¡ 1 ; uu k ¡ 1 i p k = ¸ A ¤ ( ¡ A u k + f + v k ¡ 1 ) 2 @ J ( u k )
35
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Dual update formula Iterative refinement = dual proximal method = Bregman iteration. Minimization in each step of Generalized Bregman distance Iterative Refinement & ISS ¸ 2 k A u ¡ f k 2 + D p k ¡ 1 J ( u ; u k ¡ 1 ) D q J ( u ; v ) = J ( u ) J ( v ) ¡ h q ; uv i q 2 @ J ( v ) p k = p k ¡ 1 + ¸ A ¤ ( ¡ A u k + f )
36
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Choice of parameter less important, can be kept small (oversmoothing). Regularizing effect comes from appropriate stopping. Quantitative stopping rules available, or „stop when you are happy“ in imaging – S.O. Limit to zero can be studied. Yields gradient flow for the dual variable („inverse scale space“) mb-Gilboa-Osher-Xu 06, mb-Frick-Osher-Scherzer 06 Iterative Refinement & ISS @ t p ( t ) = A ¤ ( ¡ A u ( t ) + f ) ; p 2 @ J ( u )
37
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Efficient numerical schemes for flow mb-Gilboa-Osher-Xu 06 Analysis of iteration and partly of the flow Osher-mb-Goldfarb-Xu-Yin 04, mb-Frick-Osher- Scherzer 06 Error estimates in Bregman distance mb-He-Resmerita 07 Non-quadratic fidelity is possible, some caution needed for L 1 fidelity He-mb-Osher 05, mb-Frick-Osher-Scherzer 06 Iterative Refinement & ISS
38
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Application to other energies, e.g. Besov norms (wavelets), is straight-forward Starting from soft shrinkage, iterated refinement yields firm shrinkage, inverse scale space becomes hard shrinkage Osher-Xu 06 Bregman is distance natural sparsity measure, number of nonzero components is constant in error estimates Iterative Refinement & ISS
39
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Smoothing of surfaces in level set represenation 3D Ultrasound, Kretz / GE Med. Surface Smoothing
40
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Inverse Scale Space
41
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06 Penalization TV + Besov MRI Reconstruction
42
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06 Penalization TV + Besov MRI Reconstruction
43
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Generalization to nonlinear inverse problems possible Bachmayr, Thesis 07 Different ways of approximating nonlinearity lead to different iterative schemes (similar to iterated Tikhonov / Landweber / Levenberg-Marquardt) Example: parameter identification (diffusivity) in elliptic PDE Iterative Refinement & ISS
44
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Exact Solution Reconstructions at 1 % noise Iterative 1 Iterative 2 Standard TV Iterative Refinement & ISS
45
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Generalization to combination with EM / Richardson-Lucy method in progress A.Sawatzky, C.Brune Application 1: 4pi / STED nanoscopy Application 2: PET/CT imaging with O 15 isotopes (fast decay, hence bad statistics) Current / Future Work: EM-TV
46
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Bias of one functional often too strong Better: use a family of functionals parametrized by Example: adaptive anisotropy in total variation methods Adaptive Bias / Parametrization J ( u;® ) ® 2 A
47
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 In aerial images the typical anisotropy is rectangular, houses have 90° angles But not all of them have the same orientation Adaptive Anisotropy
48
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Bias for edges with 90° angles from functional of the form R is rotation matrix for angle to capture the orientation Since orientation is not constant over the image, has to vary and to be found adaptively by minimization Adaptive Anisotropy J ( u;® ) = Z (j v 1 j + j v 2 j) d x ; v = R ® r u
49
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 To avoid microstructure, variation of has to be regularized, too Possible functional to be minimized Adaptive Anisotropy ¸ 2 Z ( u ¡ f ) 2 + J ( u;® ) + ¹ 1 2 Z j r ® j 2 + ¹ 2 2 Z j ¢ ® j 2
50
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Improves angles, still loses contrast Adaptive Anisotropy
51
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Contrast correction again by iterative refinement Angle parameter provides classification of orientations in the image Adaptive Anisotropy
52
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Cartoon reconstruction and orientational classification of aerial images Berkels, mb, Droske, Nemitz, Rumpf 06 Adaptive Anisotropy
53
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Cartoon reconstruction and orientational classification of aerial images Berkels, mb, Droske, Nemitz, Rumpf 06 Adaptive Anisotropy
54
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Analogous problem in segmentation of MRI brain images for EEG/MEG Regularization by total variation (= length of curves in segmentation) kills noise, but also elongated structures Adapt anisotropy (locally like sharp ellipse) to find sulci accurately and provide classification of normals (for dipole fitting, source reconstruction) Adaptive Anisotropy
55
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Denis Neiter, results of internship 2007 Adaptive Anisotropy
56
4.6.2007Regularization with Singular EnergiesAIP 2007, Vancouver, June 07 Papers and talks at www.math.uni-muenster.de/u/burger or by email martin.burger@uni-muenster.de Thanks for input and suggestions to: S.Osher, J.Xu, G.Gilboa, D.Goldfarb, W.Yin, L.He, E.Resmerita, M.Bachmayr, B.Berkels, M.Droske, O.Nemitz, M.Rumpf, K.Frick, O.Scherzer, A.Schönle, T.Hohage, C.Wolters, T.Kösters, K.Schäfers, F.Wübbeling, A.Sawatzky, D.Neiter Download and Contact
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.