Presentation is loading. Please wait.

Presentation is loading. Please wait.

100 Volts 0 Volts v o,x. x V(x) 50 150 100 200 50 Volts 200 Volts.

Similar presentations


Presentation on theme: "100 Volts 0 Volts v o,x. x V(x) 50 150 100 200 50 Volts 200 Volts."— Presentation transcript:

1 100 Volts 0 Volts v o,x

2 x V(x) 50 150 100 200 50 Volts 200 Volts

3 -200 Volts 200 Volts z y coordinates x

4 10 V 0 V (note the perpendicular intersections)

5 10 V 0 V x y (line of symmetry is x-axis where y=0)

6 3 V 0 V x y x V(x,0) yields 10 5 0 7 V 10 V (where the equipotential line intersects the line of symmetry)

7 x (cm) V(x,0) yields 10 5 0 E x (x,0) 150 75 0 x (cm)

8 x U(x) potential energy stable equilibrium (F NET = 0) unstable equilibrium (F NET = 0) negative slope (F NET to right) positive slope (F NET to left) AB CD

9 x U(x) potential energy A: stable equilibrium C: unstable Equilibrium D: F NET to right B: F NET to left AB CD

10 x U(x) potential energy AB CD

11 x V(x) electric potential AB begin

12 x y + Radial electric vector field of a charged conducting circle

13 x y + x y _

14 _ x y

15 x y _

16 y U(x,y) potential energy F NET to right and forward) x dotted lines show constant energy

17 y U(x,y) potential energy F NET to right and forward) x (dotted lines show constant energy: “equipotentials”) (equipotentials closer where steepest)

18 y V(x,y) electric potential (potential energy per unit charge) E(x,y) x dotted lines show constant electric potential + + solid lines show electric field arrow shows electric field direction on positive test charge

19 y V(x,y) x (dotted lines show constant electric potential) + + (solid lines show electric field) (arrow shows force on test charge) + +

20 y V(x,y) Electrical potential energy per unit charge x (equipotentials closer where steepest) + (dotted lines show constant electric potential while solid lines show electric field)

21 y V(x,y) x (dotted lines show constant electric potential) + (solid lines show electric field)

22 y V(x,y) x dotted lines show constant electric potential + solid lines show electric field

23 y x +

24 x y

25 x y V=4 volts A B q

26 V=7 volts V=5 volts E=?

27 V=7 volts V=5 volts E=? d = 2 cm

28 100 V/m x y  = 35 o  must be estimated or measured with a protractor to calculate the legs (x and Y components of E). 57 V/m 82 V/m

29 10 o 15 o 30 o 45 o 60 o 75 o

30 y V(x,y) E(x,y) x dotted lines show constant electric potential _ + solid lines show electric field arrow shows electric field direction on positive test charge

31 y V(x,y) x _ +

32

33 + ++ + + ++ + + ++ + + ++ + + ++ + + ++ + + + +

34 V I L A CROSS SECTION

35 BATTERY + + I TOTAL IAIA IBIB ICIC IEIE IDID BATTERY + +

36 + PUMP (handle) (spinning paddle wheel) e e ee e e e e e e e e e e e

37 R V source RR R a bc d e fg h

38 R R R resistors in series R V source R resistors in parallel R V source

39 6  3 V 6 

40 BATTERY + the ground BATTERY + the ground current can never flowcurrent may flow (depending on the properties of the ground)

41 BATTERY + the ground

42 9-VOLT BATTERY + _ 9-VOLT BATTERY + _

43 + -

44 NS NS Unmagnetized iron filings before being placed in magnetic field. S N SN S N

45 NS compass ? Needle direction? Draw needle in compass circle.

46 STOP PRELAB

47 - - - -- - -- - + + + + + +

48 Uncharged conducting coin grounded to Earth.

49 + - - - - -- - - The presence of positive charge creates an electric field at the coin surface that attracts electrons from the Earth to negatively charge the coin.

50 + - -- - Removing the grounding wire leaves the coin positively charged. The Earth is a giant reservoir of charge, we do not worry about the fact that it has some miniscule amount of excess positive charge.

51 + - -- - The presence of positive charge creates an electric field at the coin surface that causes macroscopic charge separation. (The coins positive charges are forced to be far away from the positively charged object.) + + + +

52 + - -- - + + + +

53 L E O N E + - -- - If some fool’s hand comes into contact with the coin, the coin’s positive charges can move even further from the charged object by moving into the hand (and body). + + + +

54 L E O N E + - -- - + + + +

55 + - -- - Removal of the hand leaves a negatively charged coin. The hand is a large reservoir of charge and we will not worry about the miniscule amount of excess positive charge in the hand (and body) unless a very strong electric field had been present.

56

57 + - -- - In presence of positively charged object.Positively charged object removed. ?

58 1.5 V A.B. C. 1.5 V D. 1.5 V V V + - + - V + - V + - V + - E.

59 6.0 V a b 4.5 V A.B. 6.0 V B.A. 6.0 V

60 a b c d 4.5 V A.B. 7.5 V 4.5 V B. A. 7.5 V 4.5 V

61 6.0 V a b c d 4.5 V A.B. 7.5 V 4.5 V B. A. 7.5 V 4.5 V

62 pith ball (conductor) + Initial attraction + repulsion after touching

63 metallic enclosure solid metallic bar with round end very thin strip of pure gold

64 + + + + + + + + +

65 + _ _ + + _ + _ + _ + _ + _ + _ + _ _ + _ + _ + _ + _ + _ _

66 BATTERY + +

67 R V source R R R R A.B.C.

68 BATTERY + + + + V 1.5 0 3.0 4.5 6.0

69

70

71 - - - -- - -- - + + + + + + - - - -- - -- - balloon sticks to wall

72 + - -- - + + + +

73 R V source R R

74 + _ _ point of intersection

75 + _ _ point of intersection can’t happen

76 + - - + - + A BC

77 V R1R1 R2R2 V R equivalent

78 V R1R1 R2R2 V

79 6 V 1 

80 9 V 1  2  4  9 V RARA 4  9 V RBRB

81 10 V R 1 = 1  R 2 =4  I 2 =? V 2 =? I 1 =? V 1 =?I Battery =?

82 12 V R 1 = 5  R 2 =1  I 2 =? V 2 =? I 1 =? V 1 =?I Battery =? R Total = ?

83 10 V R1R1 R2R2 RARA

84 9 V R 1 = 1  R 2 = 2  R 3 =4  I 3 =? V 3 =? I 1 =? V 1 =?I 2 =? V 2 =?I Battery =?

85 10 V R 1 = 8  R 2 = 8  R 4 =2  I 4 =? V 4 =? I 1 =? V 1 =? I 2 =? V 2 =?I Battery =? R 3 =2  I 3 =? V 3 =? R total = 5 ohms I battery = 2 amps V 1 = V 2 = 8 volts I 1 = I 2 = 1 amp V 3 = V 4 = 2 volts I 3 = I 4 = 1 amp

86 R  V applied

87 I

88 V 100  abc 200  V a c b 100  d ef

89 V 200  a c b 100  d ef

90 R

91 200  100  red 1 black 2 red 2 + - black 1

92 tV(t) 5 0 -5 tt

93 I  V applied

94 12 V R 1 = 8  I 1 =? V 1 =? I Battery =? R 2 =1  R equivalent = ? I battery = ? V 1 = ? I 1 = ? V 2 = ? I 2 = ? I 2 =? V 2 =?

95 C V C V d c b a C R d c b a

96 Magnet B Close is strong B Far is weak Magnet B IL B rotate I I I I

97 Magnet B I I I VV

98 N solenoid loops enclosed in the Amperian loop, each with current I. n is “loop density” N/L of solenoid. B IN Amperian loop L Ampere’s Law:

99 R L B incident  induced by B acts like battery. Current flowing through resistor is easily measured.  induced External Inductance R L  induced Oscillating voltage source causes oscillating B inside inductor. Oscillating B inside inductor induces voltage  induced (back EMF). Back EMF makes inductor seem like a resistor to the voltage source. Self Inductance

100 R L B incident An oscillating external B causes an induced voltage  induced across the inductor.  induced External Inductance R L  induced Oscillating voltage source causes oscillating B inside inductor which induces a voltage  induced across the inductor. Self Inductance

101 R L Self Inductance:

102 I I I DC Power Supply + - brushes Magnet B

103 I NS S N

104 I I a y z x {outward}

105 y z x

106 V(t) t VLVL VRVR VSVS

107 t V?V? V?V? VRVR

108 t VLVL VCVC VRVR

109 t VCVC VRVR VSVS

110 t V?V? VRVR V?V?

111 t VLVL VCVC VRVR VSVS

112 VLVL VCVC VRVR VSVS t

113 R [ohm] C [farad] V source L [henry]

114 V s (t) + - 0 V s (t)-V R (t) V s (t)-V R (t)-V C (t) V s (t)-V R (t)-V C (t)- V L (t)=0 +Q -Q VSVS VCVC + + + - - - VRVR VLVL I(t)

115 t V(t)

116 [V] [t]

117 [V] [t]

118 [V] [t]

119 Pulses let through by the diode move speaker with frequency of desired audio wave. Quantum mechanical turn-on voltage of diode. Modulate Wave Transmitted by Diode to Speaker [V] 0

120 ANT GND A B PRIMARY SOLENOID SECONDARY SOLENOID

121 ANT GND A B PRIMARY SOLENOID SECONDARY SOLENOID secondary circuit L sec

122 ANT GND A B PRIMARY SOLENOID SECONDARY SOLENOID secondary circuit L sec /2

123 Diode A B TUNER EAR

124 3,600 [Hz]

125 envelope [Hz] carrier [Hz] RF Modulator RF out low in CH 2 CH 1 modulated

126 envelope [Hz] carrier [Hz] RF Modulator RF out low in CH 2 CH 1 modulated

127

128 CH 2 CH 1 modulated antenna ground

129 I amplitude f drive f resonance I amplitude f drive f resonance AB

130 9 V R 1 = 1  R 2 = 2  R 3 = 3  R 4 =4  I 4 =? V 4 =? I 1 =? V 1 =?I 2 =? V 2 =? I 3 =? V 3 =? I Battery =? R equivalent =?

131 BATTERY + a b c d

132 + + A B Total charge +Q & -Q ++++++++++++++ +++++++++ +++++ +++++ +++++ --------- --------- --------- --------- (-Q/2) (+Q/4) (+Q/2)

133 R1R1 VSVS S1S1 R2R2 C S2S2 R 1 = 1x10 6 [  ] R 2 = 1x10 5 [  ] C = 1x10 -5 [F] V s = 10 [V]

134 Thumb shows direction of magnetic field. B Wrap fingers in direction of current. q If charge q is negative, reverse B-field direction.

135 B I I Thumb shows direction of magnetic field.

136

137

138 BATTERY + voltage “height” 1.5 [V] 0 [V]

139 BATTERY + voltage “height” 1.5 [V] 0 [V]

140 BATTERY voltage “height” 1.5 [V] 0 [V] voltage 1.5 [V] 0 [V] position on circuit abcda 1.5 [V] a b c d a d c b

141 BATTERY + voltage “height” 1.5 [V] 0 [V] a b c d e voltage 1.5 [V] 0 [V] position on circuit abcdea

142 1.5 [V] R BULB 1.5 [V] R BULB a b c d e

143 BATTERY + voltage “height” 1.50 [V] 0 [V] a b c 0.75 [V]

144 BATTERY + voltage “height” 1.50 [V] 0 [V] 0.75 [V]

145 voltage 1.50 [V] 0 [V] position on circuit abc 0.75 [V] a

146 V R Bulb abc V a b f d ce

147 a voltage “height” 1.5 [V] 0 [V] BATTERY + b c dfe

148 voltage 1.50 [V] 0 [V] position on circuit fdb 0.75 [V] ace f aa

149 display settings + positive terminal for high current measurements (has large fuse) - negative terminal or “ground” + positive terminal

150 Voltage V DC V R BATTERY +

151 ? amps BATTERY + ? amps mA BATTERY + mA AB

152 Amperes mA A R BATTERY +

153 Amperes mA A R BATTERY +

154 Ohms (  )  R

155 3 V a b c d BATTERY + + ab cd R Bulb 1.5 [V] 0 [V] 3.0 [V] 3 V a b c d BATTERY + + ab c d 1.5 [V] 0 [V] 3.0 [V]

156 V amp =3 V 330  CH1CH2 red1 red2 bottom ground x-y mode

157 30 V Ground 1000 V 2000 V 3000 V constant voltage - - - - - ground - - - - -- - - - - - - - -

158 30 V Ground 1000 V 2000 V 3000 V constant voltage charge separation ground

159 + + + + + - - - - - - - + + + + + + + + + + - - - - - - - + + + + - - - - - - - + + evenly arranged clustered positive clustered negative

160 Real Imaginary VRVR tt VLVL VCVC VSVS  shift 

161 Real Imaginary VRVR VLVL VCVC

162 Im{V(t)} Re{V(t)} Real Imaginary V0V0 tt V(t)=V 0 e i  t rotates around the complex plane in time.

163 Voltage time VLVL VCVC VRVR VSVS

164 R [ohm] C [farad] V source L [henry] R [ohm] C [farad] V source L [henry] THEORYREALITY

165 NS

166 x AB CDE

167 x [cm] 10 [V]86420 0246810

168 x [cm] 1086420 [V] 0246810 A B

169 N solenoid loops enclosed in the Amperian loop, each with current I. n is “loop density” N/L of solenoid. B IN Amperian loop L Ampere’s Law:


Download ppt "100 Volts 0 Volts v o,x. x V(x) 50 150 100 200 50 Volts 200 Volts."

Similar presentations


Ads by Google