Download presentation
Presentation is loading. Please wait.
2
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By: DARPA, AFOSR
3
OPERATIONS NEEDED FOR A QUANTUM COMPUTER STATE PREPARATION: e.g. OPTICAL PUMPING SINGLE BIT OPERATION: e.g. -PULSE TWO-BIT OPERATIONS: e.g. CNOT METHOD: LASER CONTROLLED SPIN EXCITATION (DARK RESONANCE) MEDIUM: SHB CRYSTAL, e.g. NV-DIAMOND
4
(1 cm) 3 (5 m) 3 KEY FEATURES: SPIN AS QUBIT >5000 OPS BEFORE DECOHERENCE OPTICAL OPERATION & READOUT OPTICAL INTERCONNECT POSSIBLE NATURALLY SUITED TO TYPE 2 QC SOLID STATE SCALABLE TO >1000 PARALLEL POSSIBLE BOTTOM LINES: QUANTUM COMPUTING IN NV-DIAMOND: BASIC IDEA
5
|a> - |e>|b> - |e> |a> + |e>|b> + |e> |->=|b>|->=|a> |+> - |e> |+> + |e> 1 0 AMPLITUDE TIME |-> = ( 2 |a> - 1 |b>)/ |+> = ( 1 |a> + 2 |b>)/ |e |a |b |e |-|+ ADIABATIC TRANSFER VIA THE DARK STATE TOPOLGICALLY ROBUST EQUIVALENT TO A -PULSE
6
ATOM A ATOM B 11 22 g AB 0 g 22 g 11 AB 0 STEP 1: COHERENCE TRANSFER VIA CAVITY QED METHOD 1: CAVITY ENHANCED COUPLING
8
22 11 0 1 INTENSITY TIME ADIABATIC COHERENCE TRANSFER ATOM 1 ATOM 2 11 22 g CAVITY VACUUM COUPLING g ATOM 1 ATOM 2 |a 1 > |b 1 > |e 1 > 11 g |a 2 >|b 2 > |e 2 > 22 g INITIAL RAMAN DARK STATES |a 1 b 2 0> |b 1 a 2 0> 11 g 22 g |b 1 b 2 1> |e 1 b 2 0>|b 1 e 2 0> 2 g 1 g 1 2 |b 1 b 2 0> NO CAVITY PHOTONS ONE CAVITY PHOTON ADIABATIC COHERENCE TRANSFER VIA CAVITY-QED DARK STATE
9
DARK STATE QUANTUM COMPUTING IN NV-DIAMOND: NECESSARY ENERGY LEVELS a c QUBIT 1QUBIT 2 b d a c b d ef ef gh gh
10
DARK STATE QUANTUM COMPUTING IN NV-DIAMOND: ROLE OF STORAGE LEVELS a c b d ef a c b d ef a c b d ef a c b d ef
12
DARK STATE QUANTUM COMPUTING IN SHB CRYSTAL: CANDIDATE MATERIALS gh a c b d e f 4.6 MHz 4.8MHz 10.2 MHz 17.3 MHz 2m I 5 3 1 ff 1 3 5 3H43H4 1D21D2 gh a c b d e f P Q 4.6 MHz 2.8 MHz ff 3A13A1 3E3E IZIZ 1 0 1 0 SZSZ 1 Sgn(m I ) + - [A][B] IZIZ 1 0 1 0 Pr:YSONV-DIAMOND
13
ISSUES WITH N-V DIAMOND SPIN-ORBIT COUPLING SOMEWHAT INHIBITED RAMAN TRANSITIONS PARTIALLY FORBIDDEN WORK NEAR ANTI-CROSSING, LEVELS MIX PERMANENT HOLE BURNING NO CW SIGNAL, CITE RE-ARRANGEMENT RE-PUMP ON PHONON SIDEBAND 2.88 GHz S= ±1 S= 0 B-FIELD 01050 G 120 MHz 638 nm ZERO PHONON LINE PHONON SIDEBAND ABSORPTION WAVELENGTH (nm) 638514 ARGON LASER REPUMP DYE LASER
14
18 SPOT SIZES: ~ 0.3 mm INTENSITIES: COUPLING -- 14 mW 13 W/cm 2 PROBE -- 14 mW READ -- 16 mW C R PA D SPOTS ON SCREEN BRAGG MATCHED ARGON REPUMP ARGONDYE AOM SCREEN APD D A C P R DIAMOND B-FIELD APERTURE LO EXPERIMENTAL SETUP FOR DARK RESONANCE IN DIAMOND SIGNAL (BEAT W/ LO) S = 0 S = -1 120 MHz 20 MHz P C D R ~638nm
15
120 MHz S = 0 20 MHz R D P C S = -1 DETECTION OF OPTICALLY INDUCED SPIN ALIGNMENT IN NV-DIAMOND CAN BE INTERPRETED AS SPATIALLY VARYING COLLECTIVE SINGLE SPIN OPERATIONS
16
120 MHz LEVEL DIAGRAM S = 0 S = -1 P C EIT AS EVIDENCE OF EFFICIENT STATE PREPARATION IN NV-DIAMOND -20-1001020 0 8 16 24 32 40 48 56 64 8.5 MHz Probe Beam Detuning (MHz) EIT amplitude (%) P P C
17
NDFWM SIGNALS: CENTRAL FREQUENCY 120 MHZ COUPLING 7 W/cm 2 = 1.4 I sat PROBE 1 W/cm 2 = 0.3 I sat (SCANNED) READ 4 mW SPOT SIZE 300 m 120 MHz LEVEL DIAGRAM S = 0 S = -1 20 MHz P C D R ~638nm 120100140 DIFF. FREQ. (MHz) INTENSITY (ARB.) ANTI-CROSSING B = 1050 G AOM TUNING LIMIT SPIN ALIGNMENT AMPLITUDE VS. MAGNETIC FIELD STRENGTH
18
10 CONTROLLED NOT WITH NEAR DIPOLE-DIPOLE INTERACTION APPLY OPTICAL 2 PULSE WITH 1 CONTROL ATOM IN |b 2 >, NOTHING HAPPENS --EXCITED STATE SPLIT, 1 NOT RESONANT CONTROL ATOM IN |c 2 >, SIGN |c 1 > IS REVERSED: | c 1 c 2 > - 1 c 2 > PHASE SHIFT GATE EQUIVALENT TO CONTROLLED-NOT IN ROTATED BASIS Frequency of 1 Absorption of 1 Excites optical transition No excitation g= 0.006 ( /r) 3 ( A B ) ATOM 1 TARGET ATOM 2 CONTROL |c 1 > |b 1 > |a 1 > |b 2 > |c 2 > |a 2 > gg 1 |c 1 > |a 1 > 1 |c 1 > |a 1 b 2 >- |b 1 a 2 > |a 1 b 2 >+ |b 1 a 2 > 1 g ATOM IN |b 2 >ATOM IN |c 2 > CONTROL-NOT WITH DIPOLE-DIPOLE INTERACTION METHOD 2: DIPOLE-DIPOLE INTERACTION
19
300 nm 20 nm Diamond SiO 2 Hole filled with nonlinear-optic glass
20
SiO 2 Holes filled with nonlinear-optic glass Anomalous hole also filled with nonlinear-optic glass Cavity
21
PMMA (E-Beam Litho) SiO 2 (CF 4 /CHF 3 RIE) Polyimide (O 2 RIE) Alumina (BCl 3 RIE) SiO 2 (CF 4 /CHF 3 RIE) Diamond (O 2 RIE) SiO 2
22
SIMULATION OF THE TWO-DIMENSIONAL ISING MODEL, ISOMORPHIC TO THE PROBLEM OF THE MAXIMUM INDEPENDENT SET
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.