Download presentation
Presentation is loading. Please wait.
1
State Agnostic Planning Graphs William Cushing Daniel Bryce Arizona State University {william.cushing, dan.bryce}@asu.edu Special thanks to: Subbarao Kambhampati, David E. Smith, Menkes van den Briel, Romeo Sanchez, J. Benton
2
Motivation Reachability analysis (via Planning Graphs) Sets of planning graphs are useful Progression search Belief-space planning Replanning Robustification Local search …… …but highly redundant PGs overlap (duplicate information) PGs are inflexible (fixed source) Generalize PG to multiple sources p5 q5 r5 p6 o pq o pr o 56 p5p5 pqr56pqr56 o pq o pr o 56 pqrst567pqrst567 o ps o qt o 67 q5q5 qtr56qtr56 o qt o qr o 56 qtrsp567qtrsp567 o qs o tp o 67 r5r5 rqp56rqp56 o rq o rp o 56 rqpst567rqpst567 o rs o qt o 67 p6p6 pqr67pqr67 o pq o pr o 67 pqrst678pqrst678 o ps o qt o 78 Introduction 1 3 4 1 3 o 12 o 34 2 1 3 4 5 o 12 o 34 o 23 o 45 2 3 4 5 3 5 o 34 o 56 3 4 5 o 34 o 45 o 56 66 7 o 67 1 5 1 5 o 12 o 56 2 1 3 5 o 12 o 23 o 56 2 66 7 o 67 G oGoG G oGoG G oGoG G oGoG G oGoG 1 3 3 5 1 5 h( )=5
3
Overview Scratch State Agnostic Graph Planning Graphs BuildPG(A) BuildSAG() 1.Labeled Uncertainty Graph [LUG] 2.(Belief) State Agnostic LUG [SA LUG ] 3.Optimized (Belief) State Agnostic LUG [SLUG] ExtractH(A,B) Reachability Queries ExtractH(A,B) Technique: Transform BuildPG(A) into BuildSAG() Introduction
4
Domain Agent has a bag of letters and digits “ac45” = {f a =T, f c =T, f 4 =T, f 5 =T, …=F} Agent can trade letters freely Trade c for e (o ce ): “ac45” => “ae45” Trace c for a (o ca ): “ac45” => “a45” Movement on a clique (zenotravel [fly]) Agent can increment digits Increment 5 (o 56 ): “ac45” => “ac46” Increment 4 (o 45 ): “ac45” => “ac5” Movement along a ray (blocksworld [unstack])
5
Envelope of Progression Tree (Relaxed Progression) Linear vs. Exponential Growth Used for: Search Reachability Heuristics p5 q5 r5 p6 q6 t5 p5p5 p7 s6 pqr56pqr56 pqrst567pqrst567 o pq o pr o 56 o qt o 67 o ps o pq o pr o 56 o ps o qt o 67 [Kambhampati et al, ECP, 1997] Planning Graph Basics
6
Multiple Graphs 1 3 3 5 1 5 1 3 4 1 3 o 12 2 1 3 4 5 o 34 o 23 2 3 4 5 3 5 o 34 o 56 3 4 5 o 34 o 45 o 56 66 7 o 67 1 5 1 5 o 56 2 1 3 5 o 12 o 56 2 66 7 o 67 h( )=5 G oGoG G oGoG G G G Heuristics for belief-space G D. Bryce and S. Kambhampati, “Heuristic Guidance Measures for Conformant Planning”, In ICAPS’04, 2004. o 34 o 45 o 12 o 23 oGoG oGoG oGoG
7
11 o 12 2 1 o 23 2 Unioned Graphs 1 3 3 5 1 5 3 4 3 o 34 3 4 5 o 45 11 o 12 2 1 o 23 2 3 4 5 3 5 o 34 o 56 3 4 5 o 34 o 45 o 56 66 7 o 67 11 o 12 2 1 3 o 23 2 55 o 56 5 66 7 o 67 G oGoG G oGoG G oGoG G oGoG G oGoG G oGoG G oGoG Heuristics for belief-space G
8
Unioned Graphs 11 o 12 2 1 o 23 2 3 4 5 3 5 o 34 o 56 3 4 5 o 34 o 45 o 56 66 7 o 67 G oGoG G oGoG G oGoG h( )=1 Heuristics for belief-space G 1 3 3 5 1 5 3 5
9
h( )=5 Labeled Graph [LUG] 1 3 4 5 1 3 5 o 12 o 34 o 56 2 1 3 4 5 o 12 o 34 o 23 o 45 o 56 2 66 7 o 67 oGoG G GG oGoG oGoG Heuristics for belief-space 1 3 3 5 1 5 G D. Bryce, S. Kambhampati, and D. Smith, “Planning in Belief Space with a Labelled Uncertainty Graph”, In AAAI Workshop on Markov Processes, 2004.
10
Labeled Graph [LUG] 1 ^ 3 ^ -5 ^ γ 3 ^ 5 ^ -1 ^ γ 1 ^ 5 ^ -3 ^ γ 1 ^ 3v5 ^ -3v-5 ^ γ 3 ^ 1v5 ^ -1v-5 ^ γ 5 ^ 1v3 ^ -1v-3 ^ γ 1v3 ^ 3v5 ^ 1v5 ^ -1v-3v-5 ^ γ 1 3 4 5 o 12 o 34 o 56 2 6 oGoG G 1 3 4 5 o 12 o 34 o 23 o 45 o 56 2 6 7 o 67 G oGoG G oGoG Binary Decision Diagrams Initialize: and/projection Operator: and/preconditions Literal: or/supporters Heuristics for belief-space D. Bryce, S. Kambhampati, and D. Smith, “Planning in Belief Space with a Labelled Uncertainty Graph”, In AAAI Workshop on Markov Processes, 2004. 1 3 3 5 1 5 1 3 5 G γ = “everything else false”
11
Multiple (Labeled) Graphs 1 3 3 5 1 3 3 5 1 5 1 3 1 5 3 5 1 5 1 3 5 1 3 5 1 3 5 1 3 5 G oGoG G oGoG G oGoG G oGoG Single graph for progression D. Bryce, S. Kambhampati, and D. Smith, “Planning Graph Heuristics for Belief Space Search”, ASU CSE TR, 2005.
12
Unioned (Labeled) Graph 1 3 4 5 o 12 o 34 o 23 o 45 o 56 2 6 7 o 67 GG oGoG oGoG 1 3 4 5 2 6 G 1 3 5 o 12 o 34 o 56 oGoG 1 3 3 5 1 5 Single graph for progression
13
Introduce labels for beliefs over labels for states Labeled (Labeled) Graph [SA LUG ] 1 3 4 5 1 3 5 o 12 o 34 o 56 2 1 3 4 5 o 12 o 34 o 23 o 45 o 56 2 66 7 o 67 oGoG G GG oGoG oGoG 1 3 3 5 1 5 S r v S b S b v S g S r v S g S r ^S b ^S g => 1v3 ^ 3v5 ^ 1v5 ^ -1v-3v-5 ^ γ -S r => 5 ^ 1v3 ^ -1v-3 ^ γ -S b => 1 ^ 3v5 ^ -3v-5 ^ γ -S g => 3 ^ 1v5 ^ -1v-5 ^ γ Single graph for progression W. Cushing and D. Bryce, “State Agnostic Planning Graphs”, In AAAI, 2005.
14
Labeled (Labeled) Graph [SA LUG ] 1 3 4 5 1 3 5 o 12 o 34 o 56 2 1 3 4 5 o 12 o 34 o 23 o 45 o 56 2 66 7 o 67 oGoG G GG oGoG oGoG 1 3 3 5 1 5 Single graph for progression W. Cushing and D. Bryce, “State Agnostic Planning Graphs”, In AAAI, 2005.
15
Filtered Unioned (Labeled) Graph [SLUG] 1 3 1 5 1 3 4 5 1 3 5 o 12 o 34 o 56 2 1 3 4 5 o 12 o 34 o 23 o 45 o 56 2 66 7 o 67 oGoG G GG oGoG oGoG 3 5 Don’t let the name fool you! Ignore irrelevant labels Largest LUG == all LUGs Optimized single graph W. Cushing and D. Bryce, “State Agnostic Planning Graphs”, In AAAI, 2005.
16
Belief Space ProblemsClassical Problems Conformant Contingent Empirical Results
17
Conclusion Developed general agnosticism (SAG) Removed dependence on world state (PG LUG) Removed dependence on belief state (LUG SA LUG ) Dramatically improved performance ({LUG,SA LUG } ~> SLUG) Empirically demonstrated Internal performance boost Favorable external comparison SAG has rich connections to: Constraint propagation (vs. branching) Lazy evaluation Memoization
18
Further Details Heuristics for belief space in the CAltAlt planner D. Bryce and S. Kambhampati, “Heuristic Guidance Measures for Conformant Planning”, In ICAPS’04, 2004. Labeled Uncertainty Graph in the CAltAlt planner D. Bryce, S. Kambhampati, and D. Smith, “Planning in Belief Space with a Labelled Uncertainty Graph”, In AAAI Workshop on Markov Processes, 2004. Heuristics and LUG in the POND and CAltAlt planners D. Bryce, S. Kambhampati, and D. Smith, “Planning Graph Heuristics for Belief Space Search”, ASU CSE TR, 2005. SLUG: Improvement to LUG for POND W. Cushing and D. Bryce, “State Agnostic Planning Graphs”, In AAAI, 2005. CLUG: propagating numeric information D. Bryce and S. Kambhampati, “Cost Sensitive Reachability Heuristics for Handling State Uncertainty”, In UAI’05, 2005.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.