Download presentation
Presentation is loading. Please wait.
1
Ferromagnetism and the quantum critical point in Zr1-xNbxZn2
D. Sokolov, W. Gannon, and M. C. Aronson *University of Michigan Z. Fisk Florida State University * Supported by the U. S. National Science Foundation
2
Quantum Critical Points and Superconductivity
Heavy Fermion Intermetallics Complex Oxides CePd2Si2 (Mathur 1998)
3
Quantum Criticality in Itinerant Magnets
Antiferromagnet Ferromagnet Cr-V (Yeh 2002) UGe2 (Saxena 2000)
4
ZrZn2: Itinerant Ferromagnet
ZrZn2 spin density (4.2 K) C15 Laves Phase Pickart 1964
5
Ferromagnetic Quantum Critical Point in ZrZn2 : Pressure
(Grosche 1995) 10.5 kbar Pc = 8 kbar 0.4 kbar
6
Zr1-xNbxZn2 Polycrystalline samples m(H=0,T) = m0,0(x)(1-T/TC)b b=0.5
TC and m(H=0,T=0) are suppressed by Nb doping x
7
Quantum Critical Point in Zr1-xNbxZn2 (x=xC=0.085)
TC % Nb (x) Three dimensional Heisenberg ferromagnet (xC=0.085) TC(d+n)/z Q (x-xC) (d=3, z=2+n=3) TC4/3 Q (x-xC)
8
ZrZn2: Stoner Ferromagnet
Huang 1988 states/Ry-cell E (Ry) xC [ Stoner ferromagnet (+ magnetic fluctuations) a=I N(Ef) m0 Q (a-1)1/2 TC Q (a-1)1/ mo Q TC
9
The Initial Susceptibility c
xC=8.5% x<xC c-1=co-1t g t=(T-TC)/TC x>xC c-1=co-1+CTg x=xC c-1=CTg
10
The Critical Susceptibility (x<xC)
x=0 c= cot-g g=1.08+/ mean field <t<100 x= c=cot-g g=1.33+/ Heisenberg ferromagnet 0.01<t<100 TC (K) g reduced temperatures Fe 1044 K 1.33+/ <t<10-2 Co 1388 K 1.21+/ <t<10-2 Ni 627 K 1.35+/ <t<10-2 3d Heisenberg model Suppression of mean field behavior near quantum critical point
11
Mean Field – Heisenberg Crossover
slope=-1 slope=-4/3 x<<xC, large t: c~t-1 x~xC, small t: c~t-4/3/(x-xC) Crossover function: c~t-4/3 f(t1/3/(x-xC)) ~t-4/3f(y) large y: f(y)~y-4/3 small y: f(y)~y-1
12
The Ordered Phase T L>>x L<<x x xC
equal reduced temperatures x xC Interactions become more local as xYxC, : L<<x increasing importance of fluctuations Matrix more highly polarizable as xYxC: divergence of co
13
Paramagnetic Phase (x>xC)
0.14 0.12 0.09 T=0 c-1=co-1 + CTg xYxC: co-1Y0 x=0.08 x=0.12 x=0.14 Stoner ferromagnet: c(T,x) = cpauli/(1-a(x))
14
The T=0 Disordered State
FM x>xC: c(T)-1=c0-1+CT4/3 [ x=xC c(T)=C/Tg g=d+n/z = 4/3 (3d Heisenberg FM) g=1/2n=1 (n=1/d-1) (clean QC FM) g=1/n=1 (n=1/d-2) (dirty QC FM) g=1-l (Griffiths Phase)
15
Criticality in Zr1-xNbxZn2
FM
16
Superconductivity near a Ferromagnetic QCP
g2co/t 60 30 20 10 5 x=xC x<<xC c(q,w) = coko2/[k2+q2-iw/h(q)] Monthoux and Lonzarich 2001 k2=x(T=0)-1~ (x-xC)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.