Download presentation
Presentation is loading. Please wait.
1
EECC550 - Shaaban #1 Lec # 5 Winter 2000 12-20-2000 CPU Design Steps 1. Analyze instruction set operations using independent RTN => datapath requirements. 2. Select set of datapath components & establish clock methodology. 3. Assemble datapath meeting the requirements. 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic.
2
EECC550 - Shaaban #2 Lec # 5 Winter 2000 12-20-2000 CPU Design & Implantation Process Bottom-up Design: –Assemble components in target technology to establish critical timing. Top-down Design: –Specify component behavior from high-level requirements. Iterative refinement: –Establish a partial solution, expand and improve. datapath control processor Instruction Set Architecture => Reg. FileMuxALURegMemDecoderSequencer CellsGates
3
EECC550 - Shaaban #3 Lec # 5 Winter 2000 12-20-2000 Single Cycle MIPS Datapath: CPI = 1, Long Clock Cycle
4
EECC550 - Shaaban #4 Lec # 5 Winter 2000 12-20-2000 Drawback of Single Cycle Processor Long cycle time. All instructions must take as much time as the slowest: –Cycle time for load is longer than needed for all other instructions. Real memory is not as well-behaved as idealized memory –Cannot always complete data access in one (short) cycle.
5
EECC550 - Shaaban #5 Lec # 5 Winter 2000 12-20-2000 Abstract View of Single Cycle CPU PC Next PC Register Fetch ALU Reg. Wrt Mem Access Data Mem Instruction Fetch Result Store ALUctr RegDst ALUSrc ExtOp MemWr Equal nPC_sel RegWr MemWr MemRd Main Control ALU control op fun Ext
6
EECC550 - Shaaban #6 Lec # 5 Winter 2000 12-20-2000 Single Cycle Instruction Timing PCInst Memory mux ALUData Mem mux PCReg FileInst Memory mux ALU mux PCInst Memory mux ALUData Mem PCInst Memorycmp mux Reg File Arithmetic & Logical Load Store Branch Critical Path setup
7
EECC550 - Shaaban #7 Lec # 5 Winter 2000 12-20-2000 Reducing Cycle Time: Multi-Cycle Design Cut combinational dependency graph by inserting registers / latches. The same work is done in two or more fast cycles, rather than one slow cycle. storage element Acyclic Combinational Logic storage element Acyclic Combinational Logic (A) storage element Acyclic Combinational Logic (B) =>
8
EECC550 - Shaaban #8 Lec # 5 Winter 2000 12-20-2000 Clock Cycle Time & Critical Path Critical path: the slowest path between any two storage devices Cycle time is a function of the critical path must be greater than: –Clock-to-Q + Longest Path through the Combination Logic + Setup Clk........................
9
EECC550 - Shaaban #9 Lec # 5 Winter 2000 12-20-2000 Instruction Processing Cycles Obtain instruction from program storage Determine instruction type Obtain operands from registers Compute result value or status Store result in register/memory if needed (usually called Write Back). Update program counter to address of next instruction } Common steps for all instructions Instruction Fetch Instruction Decode Execute Result Store Next Instruction
10
EECC550 - Shaaban #10 Lec # 5 Winter 2000 12-20-2000 Partitioning The Single Cycle Datapath Add registers between smallest steps PC Next PC Operand Fetch Exec Reg. File Mem Access Data Mem Instruction Fetch Result Store ALUctr RegDst ALUSrc ExtOp MemWr nPC_sel RegWr MemWr MemRd
11
EECC550 - Shaaban #11 Lec # 5 Winter 2000 12-20-2000 Example Multi-cycle Datapath PC Next PC Operand Fetch Ext ALU Reg. File Mem Acces s Data Mem Instruction Fetch Result Store ALUctr RegDst ALUSrc ExtOp nPC_sel RegWr MemWr MemRd IR A B R M Reg File MemToReg Equal Registers added: IR: Instruction register A, B: Two registers to hold operands read from register file. R: or ALUOut, holds the output of the ALU M: or Memory data register (MDR) to hold data read from data memory
12
EECC550 - Shaaban #12 Lec # 5 Winter 2000 12-20-2000 Operations In Each Cycle Instruction Fetch Instruction Decode Execution Memory Write Back R-Type IR Mem[PC] A R[rs] B R[rt] R A + B R[rd] R PC PC + 4 Logic Immediate IR Mem[PC] A R[rs] R A OR ZeroExt[imm16] R[rt] R PC PC + 4 Load IR Mem[PC] A R[rs] R A + SignEx(Im16) M Mem[R] R[rd] M PC PC + 4 Store IR Mem[PC] A R[rs] B R[rt] R A + SignEx(Im16) Mem[R] B PC PC + 4 Branch IR Mem[PC] A R[rs] B R[rt] If Equal = 1 PC PC + 4 + (SignExt(imm16) x4) else PC PC + 4
13
EECC550 - Shaaban #13 Lec # 5 Winter 2000 12-20-2000 Finite State Machine (FSM) Control Model State specifies control points for Register Transfer. Transfer occurs upon exiting state (same falling edge). State X Register Transfer Control Points Depends on Input Control State Next State Logic Output Logic inputs (conditions) outputs (control points)
14
EECC550 - Shaaban #14 Lec # 5 Winter 2000 12-20-2000 Control Specification For Multi-cycle CPU Finite State Machine (FSM) IR MEM[PC] R-type A R[rs] B R[rt] R A fun B R[rd] R PC PC + 4 R A or ZX R[rt] R PC PC + 4 ORi R A + SX R[rt] M PC PC + 4 M MEM[R] LW R A + SX MEM[R] B PC PC + 4 BEQ & Equal BEQ & ~Equal PC PC + 4 PC PC + SX || 00 SW “instruction fetch” “decode / operand fetch” Execute Memory Write-back To instruction fetch
15
EECC550 - Shaaban #15 Lec # 5 Winter 2000 12-20-2000 Traditional FSM Controller State 6 4 11 next State op Equal control points stateopcond next state control points Truth or Transition Table datapath State To datapath
16
EECC550 - Shaaban #16 Lec # 5 Winter 2000 12-20-2000 Traditional FSM Controller datapath + state diagram => control Translate RTN statements into control points. Assign states. Implement the controller.
17
EECC550 - Shaaban #17 Lec # 5 Winter 2000 12-20-2000 Mapping RTNs To Control Points Examples & State Assignments IR MEM[PC] 0000 R-type A R[rs] B R[rt] 0001 R A fun B 0100 R[rd] R PC PC + 4 0101 R A or ZX 0110 R[rt] R PC PC + 4 0111 ORi R A + SX 1000 R[rt] M PC PC + 4 1010 M MEM[S] 1001 LW R A + SX 1011 MEM[S] B PC PC + 4 1100 BEQ & Equal BEQ & ~Equal PC PC + 4 0011 PC PC + SX || 00 0010 SW “instruction fetch” “decode / operand fetch” Execute Memory Write-back imem_rd, IRen Aen, Ben ALUfun, Sen RegDst, RegWr, PCen To instruction fetch state 0000 To instruction fetch state 0000
18
EECC550 - Shaaban #18 Lec # 5 Winter 2000 12-20-2000 Detailed Control Specification StateOp fieldEqNext IRPC OpsExec Mem Write-Back en selA B Ex Sr ALU S R W MM-R Wr Dst 0000???????00011 0001BEQ000111 1 0001BEQ100101 1 0001R-typex01001 1 0001orIx01101 1 0001LWx10001 1 0001SWx10111 1 0010xxxxxxx00001 1 0011xxxxxxx00001 0 0100xxxxxxx01010 1 fun 1 0101xxxxxxx00001 00 1 1 0110xxxxxxx01110 0 or 1 0111xxxxxxx00001 00 1 0 1000xxxxxxx10011 0 add 1 1001xxxxxxx10101 0 0 1010 xxxxxxx00001 01 1 0 1011xxxxxxx11001 0 add 1 1100xxxxxxx0000 1 00 1 R ORI LW SW BEQ
19
EECC550 - Shaaban #19 Lec # 5 Winter 2000 12-20-2000 Alternative Multiple Cycle Datapath (In Textbook) Miminizes Hardware: 1 memory, 1 adder
20
EECC550 - Shaaban #20 Lec # 5 Winter 2000 12-20-2000 Alternative Multiple Cycle Datapath (In Textbook) Shared instruction/data memory unit A single ALU shared among instructions Shared units require additional or widened multiplexors Temporary registers to hold data between clock cycles of the instruction: Additional registers: Instruction Register (IR), Memory Data Register (MDR), A, B, ALUOut
21
EECC550 - Shaaban #21 Lec # 5 Winter 2000 12-20-2000 Operations In Each Cycle Instruction Fetch Instruction Decode Execution Memory Write Back R-Type IR Mem[PC] PC PC + 4 A R[rs] B R[rt] ALUout PC + (SignExt(imm16) x4) ALUout A + B R[rd] ALUout Logic Immediate IR Mem[PC] PC PC + 4 A R[rs] B R[rt] ALUout PC + (SignExt(imm16) x4) ALUout A OR ZeroExt[imm16] R[rt] ALUout Load IR Mem[PC] PC PC + 4 A R[rs] B R[rt] ALUout PC + (SignExt(imm16) x4) ALUout A + SignEx(Im16) M Mem[ALUout] R[rd] Mem Store IR Mem[PC] PC PC + 4 A R[rs] B R[rt] ALUout PC + (SignExt(imm16) x4) ALUout A + SignEx(Im16) Mem[ALUout] B Branch IR Mem[PC] PC PC + 4 A R[rs] B R[rt] ALUout PC + (SignExt(imm16) x4) If Equal = 1 PC ALUout
22
EECC550 - Shaaban #22 Lec # 5 Winter 2000 12-20-2000 High-Level View of Finite State Machine Control First steps are independent of the instruction class Then a series of sequences that depend on the instruction opcode Then the control returns to fetch a new instruction. Each box above represents one or several state.
23
EECC550 - Shaaban #23 Lec # 5 Winter 2000 12-20-2000 Instruction Fetch and Decode FSM States
24
EECC550 - Shaaban #24 Lec # 5 Winter 2000 12-20-2000 Load/Store Instructions FSM States
25
EECC550 - Shaaban #25 Lec # 5 Winter 2000 12-20-2000 R-Type Instructions FSM States
26
EECC550 - Shaaban #26 Lec # 5 Winter 2000 12-20-2000 Jump Instruction Single State Branch Instruction Single State
27
EECC550 - Shaaban #27 Lec # 5 Winter 2000 12-20-2000
28
EECC550 - Shaaban #28 Lec # 5 Winter 2000 12-20-2000 Finite State Machine (FSM) Specification Finite State Machine (FSM) Specification IR MEM[PC] PC PC + 4 R-type ALUout A fun B R[rd] ALUout ALUout A op ZX R[rt] ALUout ORi ALUout A + SX R[rt] M M MEM[ALUout] LW ALUout A + SX MEM[ALUout] B SW “instruction fetch” “decode” Execute Memory Write-back 0000 0001 0100 0101 0110 0111 1000 1001 1010 1011 1100 BEQ 0010 If A = B then PC ALUout A R[rs] B R[rt] ALUout PC +SX To instruction fetch
29
EECC550 - Shaaban #29 Lec # 5 Winter 2000 12-20-2000 MIPS Multi-cycle Datapath Performance Evaluation What is the average CPI? –State diagram gives CPI for each instruction type –Workload below gives frequency of each type TypeCPI i for typeFrequency CPI i x freqI i Arith/Logic 440%1.6 Load 5 30%1.5 Store 410%0.4 branch 320%0.6 Average CPI: 4.1 Better than CPI = 5 if all instructions took the same number of clock cycles (5).
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.