Presentation is loading. Please wait.

Presentation is loading. Please wait.

Performance Technology for Complex Parallel Systems Sameer Shende, Allen D. Malony University of Oregon.

Similar presentations


Presentation on theme: "Performance Technology for Complex Parallel Systems Sameer Shende, Allen D. Malony University of Oregon."— Presentation transcript:

1 Performance Technology for Complex Parallel Systems Sameer Shende, Allen D. Malony University of Oregon

2 Overview  Introduction  Definitions, general problem  Tuning and Analysis Utilities (TAU)  Instrumentation  Measurement  Analysis  Work in progress:  Visualization: Vampir  Performance Monitoring and Steering  Performance Database Framework  Case Study: Uintah  Conclusions

3 General Problems How do we create robust and ubiquitous performance technology for the analysis and tuning of parallel and distributed software and systems in the presence of (evolving) complexity challenges? How do we apply performance technology effectively for the variety and diversity of performance problems that arise in the context of complex parallel and distributed computer systems.

4 Computation Model for Performance Technology  How to address dual performance technology goals?  Robust capabilities + widely available methodologies  Contend with problems of system diversity  Flexible tool composition/configuration/integration  Approaches  Restrict computation types / performance problems  limited performance technology coverage  Base technology on abstract computation model  general architecture and software execution features  map features/methods to existing complex system types  develop capabilities that can adapt and be optimized

5 General Complex System Computation Model  Node: physically distinct shared memory machine  Message passing node interconnection network  Context: distinct virtual memory space within node  Thread: execution threads (user/system) in context memory Node VM space Context SMP Threads node memory … … Interconnection Network Inter-node message communication * * physical view model view

6 Definitions – Profiling  Profiling  Recording of summary information during execution  inclusive, exclusive time, # calls, hardware statistics, …  Reflects performance behavior of program entities  functions, loops, basic blocks  user-defined “semantic” entities  Very good for low-cost performance assessment  Helps to expose performance bottlenecks and hotspots  Implemented through  sampling: periodic OS interrupts or hardware counter traps  instrumentation: direct insertion of measurement code

7 Definitions – Tracing  Tracing  Recording of information about significant points (events) during program execution  entering/exiting code region (function, loop, block, …)  thread/process interactions (e.g., send/receive message)  Save information in event record  timestamp  CPU identifier, thread identifier  Event type and event-specific information  Event trace is a time-sequenced stream of event records  Can be used to reconstruct dynamic program behavior  Typically requires code instrumentation

8 Event Tracing: Instrumentation, Monitor, Trace 1master 2slave 3... void slave { trace(ENTER, 2);... recv(A, tag, buf); trace(RECV, A);... trace(EXIT, 2); } void master { trace(ENTER, 1);... trace(SEND, B); send(B, tag, buf);... trace(EXIT, 1); } MONITOR 58AENTER1 60BENTER2 62ASENDB 64AEXIT1 68BRECVA... 69BEXIT2... CPU A: CPU B: Event definition timestamp

9 Event Tracing: “Timeline” Visualization 1master 2slave 3... 58AENTER1 60BENTER2 62ASENDB 64AEXIT1 68BRECVA... 69BEXIT2... main master slave 58606264666870 B A

10 TAU Performance System Framework  Tuning and Analysis Utilities  Performance system framework for scalable parallel and distributed high- performance computing  Targets a general complex system computation model  nodes / contexts / threads  Multi-level: system / software / parallelism  Measurement and analysis abstraction  Integrated toolkit for performance instrumentation, measurement, analysis, and visualization  Portable, configurable performance profiling/tracing facility  Open software approach  University of Oregon, LANL, FZJ Germany  http://www.cs.uoregon.edu/research/paracomp/tau http://www.cs.uoregon.edu/research/paracomp/tau

11 Strategies for Empirical Performance Evaluation  Empirical performance evaluation as a series of performance experiments  Experiment trials describing instrumentation and measurement requirements  Where/When/How axes of empirical performance space  where are performance measurements made in program  when is performance instrumentation done  how are performance measurement/instrumentation chosen  Strategies for achieving flexibility and portability goals  Limited performance methods restrict evaluation scope  Non-portable methods force use of different techniques  Integration and combination of strategies

12 TAU Performance System Architecture EPILOG Paraver

13 TAU Instrumentation Options  Manual instrumentation  TAU Profiling API  Automatic instrumentation approaches  PDT – Source-to-source translation  MPI - Wrapper interposition library  Opari – OpenMP directive rewriting  Binary:  JVMPI – Java virtual machine instrumentation  DyninstAPI - Runtime code patching

14 TAU Instrumentation  Targets common measurement interface (TAU API)  Object-based design and implementation  Macro-based, using constructor/destructor techniques  Program units: function, classes, templates, blocks  Uniquely identify functions and templates  name and type signature (name registration)  static object creates performance entry  dynamic object receives static object pointer  runtime type identification for template instantiations  C and Fortran instrumentation variants  Instrumentation and measurement optimization

15 Multi-Level Instrumentation  Uses multiple instrumentation interfaces  Shares information: cooperation between interfaces  Taps information at multiple levels  Provides selective instrumentation at each level  Targets a common performance model  Presents a unified view of execution

16 Manual Instrumentation – Using TAU  Install TAU % configure ; make clean install  Instrument application  TAU Profiling API  Modify application makefile  include TAU’s stub makefile, modify variables  Execute application % mpirun –np a.out;  Analyze performance data  jracy, vampir, pprof, paraver …

17 TAU Manual Instrumentation API  Initialization and runtime configuration  TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(myNode); TAU_PROFILE_SET_CONTEXT(myContext); TAU_PROFILE_EXIT(message); TAU_REGISTER_THREAD();  Function and class methods  TAU_PROFILE(name, type, group);  Template  TAU_TYPE_STRING(variable, type); TAU_PROFILE(name, type, group); CT(variable);  User-defined timing  TAU_PROFILE_TIMER(timer, name, type, group); TAU_PROFILE_START(timer); TAU_PROFILE_STOP(timer); …

18 Manual Instrumentation – C++ Example #include int main(int argc, char **argv) { TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ foo(); return 0; } int foo(void) { TAU_PROFILE(“int foo(void)”, “ ”, TAU_DEFAULT); // measures entire foo() TAU_PROFILE_TIMER(t, “foo(): for loop”, “[23:45 file.cpp]”, TAU_USER); TAU_PROFILE_START(t); for(int i = 0; i < N ; i++){ work(i); } TAU_PROFILE_STOP(t); // other statements in foo … }

19 Manual Instrumentation – C Example #include int main(int argc, char **argv) { TAU_PROFILE_TIMER(tmain, “int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ TAU_PROFILE_START(tmain); foo(); … TAU_PROFILE_STOP(tmain); return 0; } int foo(void) { TAU_PROFILE_TIMER(t, “foo()”, “ ”, TAU_USER); TAU_PROFILE_START(t); for(int i = 0; i < N ; i++){ work(i); } TAU_PROFILE_STOP(t); }

20 Manual Instrumentation – F90 Example cc34567 Cubes program – comment line PROGRAM SUM_OF_CUBES integer profiler(2) save profiler INTEGER :: H, T, U call TAU_PROFILE_INIT() call TAU_PROFILE_TIMER(profiler, 'PROGRAM SUM_OF_CUBES') call TAU_PROFILE_START(profiler) call TAU_PROFILE_SET_NODE(0) ! This program prints all 3-digit numbers that ! equal the sum of the cubes of their digits. DO H = 1, 9 DO T = 0, 9 DO U = 0, 9 IF (100*H + 10*T + U == H**3 + T**3 + U**3) THEN PRINT "(3I1)", H, T, U ENDIF END DO call TAU_PROFILE_STOP(profiler) END PROGRAM SUM_OF_CUBES

21 Instrumenting Multithreaded Applications #include void * threaded_function(void *data) { TAU_REGISTER_THREAD(); // Before any other TAU calls TAU_PROFILE(“void * threaded_function”, “ ”, TAU_DEFAULT); work(); } int main(int argc, char **argv) { TAU_PROFILE(“int main(int, char **)”, “ ”, TAU_DEFAULT); TAU_PROFILE_INIT(argc, argv); TAU_PROFILE_SET_NODE(0); /* for sequential programs */ pthread_attr_t attr; pthread_t tid; pthread_attr_init(&attr); pthread_create(&tid, NULL, threaded_function, NULL); return 0; }

22 Compiling: TAU Makefiles  Include TAU Stub Makefile ( /lib) in the user’s Makefile.  Variables:  TAU_CXXSpecify the C++ compiler used by TAU  TAU_CC, TAU_F90Specify the C, F90 compilers  TAU_DEFSDefines used by TAU. Add to CFLAGS  TAU_LDFLAGSLinker options. Add to LDFLAGS  TAU_INCLUDEHeader files include path. Add to CFLAGS  TAU_LIBSStatically linked TAU library. Add to LIBS  TAU_SHLIBSDynamically linked TAU library  TAU_MPI_LIBSTAU’s MPI wrapper library for C/C++  TAU_MPI_FLIBSTAU’s MPI wrapper library for F90  TAU_FORTRANLIBSMust be linked in with C++ linker for F90.  TAU_DISABLETAU’s dummy F90 stub library  Note: Not including TAU_DEFS in CFLAGS disables instrumentation in C/C++ programs (TAU_DISABLE for f90).

23 Including TAU’s stub Makefile include /usr/tau/sgi64/lib/Makefile.tau-pthread-kcc CXX = $(TAU_CXX) CC = $(TAU_CC) CFLAGS = $(TAU_DEFS) LIBS = $(TAU_LIBS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $< -o $@

24 TAU Instrumentation Options  Manual instrumentation  TAU Profiling API  Automatic instrumentation approaches  PDT – Source-to-source translation  MPI - Wrapper interposition library  Opari – OpenMP directive rewriting

25 Program Database Toolkit (PDT)  Program code analysis framework for developing source- based tools  High-level interface to source code information  Integrated toolkit for source code parsing, database creation, and database query  commercial grade front end parsers  portable IL analyzer, database format, and access API  open software approach for tool development  Target and integrate multiple source languages  Use in TAU to build automated performance instrumentation tools

26 Program Database Toolkit Application / Library C / C++ parser Fortran 77/90 parser C / C++ IL analyzer Fortran 77/90 IL analyzer Program Database Files IL DUCTAPE PDBhtml SILOON CHASM TAU_instr Program documentation Application component glue C++ / F90 interoperability Automatic source instrumentation

27 PDT Components  Language front end  Edison Design Group (EDG): C, C++  Mutek Solutions Ltd.: F77, F90  creates an intermediate-language (IL) tree  IL Analyzer  processes the intermediate language (IL) tree  creates “program database” (PDB) formatted file  DUCTAPE (Bernd Mohr, ZAM, Germany)  C++ program Database Utilities and Conversion Tools APplication Environment  processes and merges PDB files  C++ library to access the PDB for PDT applications

28 TAU Makefile for PDT – C++ Example include /usr/tau/include/Makefile CXX = $(TAU_CXX) CC = $(TAU_CC) PDTPARSE = $(PDTDIR)/$(CONFIG_ARCH)/bin/cxxparse TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor CFLAGS = $(TAU_DEFS) LIBS = $(TAU_LIBS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(PDTPARSE) $< $(TAUINSTR) $*.pdb $< -o $*.inst.cpp $(CC) $(CFLAGS) -c $*.inst.cpp -o $@

29 Instrumentation Control  Selection of which performance events to observe  Could depend on scope, type, level of interest  Could depend on instrumentation overhead  How is selection supported in instrumentation system?  No choice  Include / exclude lists (TAU)  Environment variables  Static vs. dynamic  Problem: Controlling instrumentation of small routines  High relative measurement overhead  Significant intrusion and possible perturbation

30 Using PDT: tau_instrumentor % tau_instrumentor Usage : tau_instrumentor [-o ] [-noinline] [-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f ] For selective instrumentation, use –f option % cat selective.dat # Selective instrumentation: Specify an exclude/include list. BEGIN_EXCLUDE_LIST void quicksort(int *, int, int) void sort_5elements(int *) void interchange(int *, int *) END_EXCLUDE_LIST # If an include list is specified, the routines in the list will be the only # routines that are instrumented. # To specify an include list (a list of routines that will be instrumented) # remove the leading # to uncomment the following lines #BEGIN_INCLUDE_LIST #int main(int, char **) #int select_ #END_INCLUDE_LIST

31 Rule-Based Overhead Analysis (N. Trebon, UO)  Analyze the performance data to determine events with high (relative) overhead performance measurements  Create a select list for excluding those events  Rule grammar (used in TAUreduce tool) [GroupName:] Field Operator Number  GroupName indicates rule applies to events in group  Field is a event metric attribute (from profile statistics)  numcalls, numsubs, percent, usec, cumusec, count [PAPI], totalcount, stdev, usecs/call, counts/call  Operator is one of >, <, or =  Number is any number  Compound rules possible using & between simple rules

32 Example Rules  #Exclude all events that are members of TAU_USER #and use less than 1000 microseconds TAU_USER:usec < 1000  #Exclude all events that have less than 100 #microseconds and are called only once usec < 1000 & numcalls = 1  #Exclude all events that have less than 1000 usecs per #call OR have a (total inclusive) percent less than 5 usecs/call < 1000 percent < 5  Scientific notation can be used  usec>1000 & numcalls>400000 & usecs/call 25

33 TAU Instrumentation Options  Manual instrumentation  TAU Profiling API  Automatic instrumentation approaches  PDT – Source-to-source translation  MPI - Wrapper interposition library  Opari – OpenMP directive rewriting

34 TAU’s MPI Wrapper Interposition Library  Uses standard MPI Profiling Interface  Provides name shifted interface  MPI_Send = PMPI_Send  Weak bindings  Interpose TAU’s MPI wrapper library between MPI and TAU  -lmpi replaced by –lTauMpi –lpmpi –lmpi

35 MPI Library Instrumentation (MPI_Send) int MPI_Send(…) /* TAU redefines MPI_Send */... { int returnVal, typesize; TAU_PROFILE_TIMER(tautimer, "MPI_Send()", " ", TAU_MESSAGE); TAU_PROFILE_START(tautimer); if (dest != MPI_PROC_NULL) { PMPI_Type_size(datatype, &typesize); TAU_TRACE_SENDMSG(tag, dest, typesize*count); } /* Wrapper calls PMPI_Send */ returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm); TAU_PROFILE_STOP(tautimer); return returnVal; }

36 Including TAU’s stub Makefile include /usr/tau/sgi64/lib/Makefile.tau-mpi CXX = $(TAU_CXX) CC = $(TAU_CC) CFLAGS = $(TAU_DEFS) LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS) LD_FLAGS = $(USER_OPT) $(TAU_LDFLAGS) OBJS =... TARGET= a.out TARGET: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $< -o $@

37 TAU Instrumentation Options  Manual instrumentation  TAU Profiling API  Automatic instrumentation approaches  PDT – Source-to-source translation  MPI - Wrapper interposition library  Opari – OpenMP directive rewriting [FZJ, Germany]

38 Instrumentation of OpenMP Constructs  OPARI  OpenMP Pragma And Region Instrumentor  Source-to-Source translator to insert POMP calls around OpenMP constructs and API functions  Done: Supports  Fortran77 and Fortran90, OpenMP 2.0  C and C++, OpenMP 1.0  POMP Extensions  EPILOG and TAU POMP implementations  Preserves source code information ( #line line file )  Work in Progress: Investigating standardization through OpenMP Forum

39 OpenMP API Instrumentation  Transform  omp_#_lock()  pomp_#_lock()  omp_#_nest_lock()  pomp_#_nest_lock() [ # = init | destroy | set | unset | test ]  POMP version  Calls omp version internally  Can do extra stuff before and after call

40 Example: !$OMP PARALLEL DO Instrumentation !$OMP PARALLEL DO clauses... do loop !$OMP END PARALLEL DO !$OMP PARALLEL other-clauses... !$OMP DO schedule-clauses, ordered-clauses, lastprivate-clauses do loop !$OMP END DO !$OMP END PARALLEL DO NOWAIT !$OMP BARRIER call pomp_parallel_fork(d) call pomp_parallel_begin(d) call pomp_parallel_end(d) call pomp_parallel_join(d) call pomp_do_enter(d) call pomp_do_exit(d) call pomp_barrier_enter(d) call pomp_barrier_exit(d)

41 Opari Instrumentation: Example  OpenMP directive instrumentation pomp_for_enter(&omp_rd_2); #line 252 "stommel.c" #pragma omp for schedule(static) reduction(+: diff) private(j) firstprivate (a1,a2,a3,a4,a5) nowait for( i=i1;i<=i2;i++) { for(j=j1;j<=j2;j++){ new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1] + a4*psi[i][j-1] - a5*the_for[i][j]; diff=diff+fabs(new_psi[i][j]-psi[i][j]); } pomp_barrier_enter(&omp_rd_2); #pragma omp barrier pomp_barrier_exit(&omp_rd_2); pomp_for_exit(&omp_rd_2); #line 261 "stommel.c"

42 OPARI: Basic Usage (f90)  Reset OPARI state information  rm -f opari.rc  Call OPARI for each input source file  opari file1.f90... opari fileN.f90  Generate OPARI runtime table, compile it with ANSI C  opari -table opari.tab.c cc -c opari.tab.c  Compile modified files *.mod.f90 using OpenMP  Link the resulting object files, the OPARI runtime table opari.tab.o and the TAU POMP RTL

43 OPARI: Makefile Template (C/C++) OMPCC =...# insert C OpenMP compiler here OMPCXX =...# insert C++ OpenMP compiler here.c.o: opari $< $(OMPCC) $(CFLAGS) -c $*.mod.c.cc.o: opari $< $(OMPCXX) $(CXXFLAGS) -c $*.mod.cc opari.init: rm -rf opari.rc opari.tab.o: opari -table opari.tab.c $(CC) -c opari.tab.c myprog: opari.init myfile*.o... opari.tab.o $(OMPCC) -o myprog myfile*.o opari.tab.o -lpomp myfile1.o: myfile1.c myheader.h myfile2.o:...

44 OPARI: Makefile Template (Fortran) OMPF77 =...# insert f77 OpenMP compiler here OMPF90 =...# insert f90 OpenMP compiler here.f.o: opari $< $(OMPF77) $(CFLAGS) -c $*.mod.F.f90.o: opari $< $(OMPF90) $(CXXFLAGS) -c $*.mod.F90 opari.init: rm -rf opari.rc opari.tab.o: opari -table opari.tab.c $(CC) -c opari.tab.c myprog: opari.init myfile*.o... opari.tab.o $(OMPF90) -o myprog myfile*.o opari.tab.o -lpomp myfile1.o: myfile1.f90 myfile2.o:...

45 TAU Measurement  Performance information  High-resolution timer library (real-time / virtual clocks)  General software counter library (user-defined events)  Hardware performance counters  PAPI (Performance API) (UTK, Ptools Consortium)  consistent, portable API  Organization  Node, context, thread levels  Profile groups for collective events (runtime selective)  Performance data mapping between software levels

46 TAU Measurement (continued)  Parallel profiling  Function-level, block-level, statement-level  Supports user-defined events  TAU parallel profile database  Callpath profiles  Hardware counts values  Tracing  All profile-level events  Inter-process communication events  Timestamp synchronization  User-configurable measurement library (user controlled)

47 TAU Measurement System Configuration  configure [OPTIONS]  {-c++=, -cc= } Specify C++ and C compilers  {-pthread, -sproc}Use pthread or SGI sproc threads  -openmpUse OpenMP threads  -opari= Specify location of Opari OpenMP tool  -papi= Specify location of PAPI  -pdt= Specify location of PDT  {-mpiinc=, mpilib= }Specify MPI library instrumentation  - TRACE Generate TAU event traces  -PROFILE Generate TAU profiles  -PROFILECALLPATHGenerate Callpath profiles (1-level)  -MULTIPLECOUNTERSUse more than one hardware counter  -CPUTIMEUse usertime+system time  -PAPIWALLCLOCKUse PAPI to access wallclock time  -PAPIVIRTUALUse PAPI for virtual (user) time …

48 TAU Measurement Configuration – Examples ./configure -c++=xlC -cc=xlc –pdt=/usr/packages/pdtoolkit-2.1 -pthread  Use TAU with IBM’s xlC compiler, PDT and the pthread library  Enable TAU profiling (default) ./configure -TRACE –PROFILE  Enable both TAU profiling and tracing ./configure -c++=CC -cc=cc –MULTIPLECOUNTERS -papi=/usr/local/packages/papi –opari=/usr/local/opari-pomp-1.1 -mpiinc=/usr/packages/mpich/include -mpilib=/usr/packages/mpich/lib –SGITIMERS -PAPIVIRTUAL  Use OpenMP+MPI using SGI’s compiler suite, Opari and use PAPI for accessing hardware performance counters & virtual time for measurements  Typically configure multiple measurement libraries

49 Setup: Running Applications % setenv PROFILEDIR /home/data/experiments/profile/01 % setenv TRACEDIR/home/data/experiments/trace/01(optional) % set path=($path / /bin) % setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\: / /lib For PAPI (1 counter): % setenv PAPI_EVENT PAPI_FP_INS For PAPI (multiplecounters): % setenv COUNTER1 PAPI_FP_INS (PAPI’s Floating point ins) % setenv COUNTER2 PAPI_L1_DCM (PAPI’s L1 Data cache misses) % setenv COUNTER3 P_VIRTUAL_TIME (PAPI’s virtual time) % setenv COUNTER4 SGI_TIMERS (Wallclock time) % mpirun –np % llsubmit job.sh

50 Performance Mapping  Associate performance with “significant” entities (events)  Source code points are important  Functions, regions, control flow events, user events  Execution process and thread entities are important  Some entities are more abstract, harder to measure  Consider callgraph (callpath) profiling  Measure time (metric) along an edge (path) of callgraph  Incident edge gives parent / child view  Edge sequence (path) gives parent / descendant view  Problem: Callpath profiling when callgraph is unknown  Determine callgraph dynamically at runtime  Map performance measurement to dynamic call path state

51 1-Level Callpath Implementation in TAU  TAU maintains a performance event (routine) callstack  Profiled routine (child) looks in callstack for parent  Previous profiled performance event is the parent  A callpath profile structure created first time parent calls  TAU records parent in a callgraph map for child  String representing 1-level callpath used as its key  “a( )=>b( )” : name for time spent in “b” when called by “a”  Map returns pointer to callpath profile structure  1-level callpath is profiled using this profiling data  Build upon TAU’s performance mapping technology  Measurement is independent of instrumentation  Use –PROFILECALLPATH to configure TAU

52 TAU Analysis  Profile analysis  pprof  parallel profiler with text-based display  racy  graphical interface to pprof (Tcl/Tk)  jracy  Java implementation of Racy  Trace analysis and visualization  Trace merging and clock adjustment (if necessary)  Trace format conversion (ALOG, SDDF, Vampir)  Vampir (Pallas) trace visualization  Paraver (CEPBA) trace visualization

53 Pprof Command  pprof [-c|-b|-m|-t|-e|-i] [-r] [-s] [-n num] [-f file] [-l] [nodes]  -cSort according to number of calls  -bSort according to number of subroutines called  -mSort according to msecs (exclusive time total)  -tSort according to total msecs (inclusive time total)  -eSort according to exclusive time per call  -iSort according to inclusive time per call  -vSort according to standard deviation (exclusive usec)  -rReverse sorting order  -sPrint only summary profile information  -n numPrint only first number of functions  -f fileSpecify full path and filename without node ids  -l List all functions and exit

54 TAU Parallel Performance Profiles

55 Terminology – Example  For routine “int main( )”:  Exclusive time  100-20-50-20=10 secs  Inclusive time  100 secs  Calls  1 call  Subrs (no. of child routines called)  3  Inclusive time/call  100secs int main( ) { /* takes 100 secs */ f1(); /* takes 20 secs */ f2(); /* takes 50 secs */ f1(); /* takes 20 secs */ /* other work */ } /* Time can be replaced by counts */

56 jracy (NAS Parallel Benchmark – LU) n: node c: context t: thread Global profiles Individual profile Routine profile across all nodes

57 jracy (Callpath Profiles) (R. A. Bell, UO) Callpath profile across all nodes

58 Vampir Trace Visualization Tool  Visualization and Analysis of MPI Programs  Originally developed by Forschungszentrum Jülich  Current development by Technical University Dresden  Distributed by PALLAS, Germany  http://www.pallas.de/pages/vampir.htm

59 Using TAU with Vampir  Configure TAU with -TRACE option % configure –TRACE –SGITIMERS …  Execute application % mpirun –np 4 a.out  This generates TAU traces and event descriptors  Merge all traces using tau_merge % tau_merge *.trc app.trc  Convert traces to Vampir Trace format using tau_convert % tau_convert –pv app.trc tau.edf app.pv Note: Use –vampir instead of –pv for multi-threaded traces  Load generated trace file in Vampir % vampir app.pv

60 Vampir: Main Window  Trace file loading can be  Interrupted at any time  Resumed  Started at a specified time offset  Provides main menu  Access to global and process local displays  Preferences  Help  Trace file can be re–written (re–grouped symbols)

61 Vampir: Timeline Diagram  Functions organized into groups  Coloring by group  Message lines can be colored by tag or size  Information about states, messages, collective, and I/O operations available by clicking on the representation

62 Vampir: Timeline Diagram (Message Info)  Source–code references are displayed if recorded in trace

63 Vampir: Execution Statistics Displays  Aggregated profiling information: execution time, # calls, inclusive/exclusive  Available for all/any group (activity)  Available for all routines (symbols)  Available for any trace part (select in timeline diagram)

64 Vampir: Communication Statistics Displays  Bytes sent/received for collective operations  Message length statistics  Available for any trace part  Byte and message count, min/max/avg message length and min/max/avg bandwidth for each process pair

65 Vampir: Other Features  Parallelism display  Powerful filtering and trace comparison features  All diagrams highly customizable (through context menus)  Dynamic global call graph tree

66 Vampir: Process Displays  Activity chart  Call tree  Timeline  For all selected processes in the global displays

67 Vampir (NAS Parallel Benchmark – LU) Timeline display Callgraph display Communications display Parallelism display

68 TAU Performance System Status  Computing platforms  IBM SP, SGI Origin, ASCI Red, Cray T3E, Compaq SC, HP, Sun, Apple, Windows, IA-32, IA-64 (Linux), Hitachi, NEC  Programming languages  C, C++, Fortran 77/90, HPF, Java  Communication libraries  MPI, PVM, Nexus, Tulip, ACLMPL, MPIJava  Thread libraries  pthread, Java,Windows, SGI sproc, Tulip, SMARTS, OpenMP  Compilers  KAI (KCC, KAP/Pro), PGI, GNU, Fujitsu, HP, Sun, Microsoft, SGI, Cray, IBM, HP, Compaq, Hitachi, NEC, Intel

69 PDT Status  Program Database Toolkit (Version 2.1, web download)  EDG C++ front end (Version 2.45.2)  Mutek Fortran 90 front end (Version 2.4.1)  C++ and Fortran 90 IL Analyzer  DUCTAPE library  Standard C++ system header files (KCC Version 4.0f)  PDT-constructed tools  TAU instrumentor (C/C++/F90)  Program analysis support for SILOON and CHASM  Platforms  SGI, IBM, Compaq, SUN, HP, Linux (IA32/IA64), Apple, Windows, Cray T3E, Hitachi

70 Work in Progress  Visualization:  TAU will generate event-traces with PAPI performance data. Vampir (v3.0) will support visualization of this data  Performance Monitoring and Steering  Performance Database Framework

71 Vampir v3.x: HPM Counter  Counter Timeline Display  Process Timeline Display

72 Performance Monitoring and Steering  Desirable to monitor performance during execution  Long-running applications  Steering computations for improved performance  Large-scale parallel applications complicate solutions  More parallel threads of execution producing data  Large amount of performance data (relative) to access  Analysis and visualization more difficult  Problem: Online performance data access and analysis  Incremental profile sampling (based on files)  Integration in computational steering system  Dynamic performance measurement and access

73 Online Performance Analysis (K. Li, UO) Application Performance Steering Performance Visualizer Performance Analyzer Performance Data Reader TAU Performance System Performance Data Integrator SCIRun (Univ. of Utah) // performance data streams // performance data output file system sample sequencing reader synchronization accumulated samples

74 2D Field Performance Visualization in SCIRun SCIRun program

75 Uintah Computational Framework (UCF)  University of Utah  UCF analysis  Scheduling  MPI library  Components  500 processes  Use for online and offline visualization  Apply SCIRun steering

76 Empirical-Based Performance Optimization characterization Performance Tuning Performance Diagnosis Performance Experimentation Performance Observation hypotheses properties Experiment Schemas Experiment Trials observability requirements ? Process

77 TAU Performance Database Framework Performance analysis programs Performance analysis and query toolkit  profile data only  XML representation  project / experiment / trial PerfDML translators... ORDB PostgreSQL PerfDB Performance data description Raw performance data

78 PerfDBF Architecture (L. Li, R. Bell, UO) App. profiled With TAU Standard TAU Output Data TAU XML Format SQL Database Analysis Tool TAU to XML Converter Database Loader

79 Scalability Analysis Process  Scalability study on LU  % suite.def # of procs -> 1, 2, 4, and 8  % mpirun -np 1 lu.W1  % mpirun -np 2 lu.W2  % mpirun -np 4 lu.W4  % mpirun -np 8 lu.W8  populateDatabase.sh  run Java translator to translate profiles into XML  run Java XML reader to write XML profiles to database  Read times for routines and program from experiments  Calculate scalability metrics

80 Contents of Performance Database

81 Scalability Analysis Results  Scalability of LU performance experiments  Four trial runs Funname| processors| meanspeedup …. applu| 2| 2.0896117809566 applu| 4| 4.812100975788783 applu| 8| 8.168409581149514 … exact| 2| 1.95853126762839071803 exact| 4| 4.03622321124616535446 exact| 8| 7.193812137750623668346

82 Current Status and Future  PerfDBF prototype  TAU profile to XML translator  XML to PerfDB populator  PostgresSQL database  Java-based PostgresSQL query module  Use as a layer to support performance analysis tools  Make accessing the Performance Database quicker  Continue development  XML parallel profile representation  Basic specification

83 Overview  Introduction  Definitions, general problem  Tuning and Analysis Utilities (TAU)  Instrumentation  Measurement  Analysis  Work in progress:  Visualization: Vampir  Performance Monitoring and Steering  Performance Database Framework  Case Study: Uintah  Conclusions

84 Case Study: Utah ASCI/ASAP Level 1 Center  C-SAFE was established to build a problem-solving environment (PSE) for the numerical simulation of accidental fires and explosions  Fundamental chemistry and engineering physics models  Coupled with non-linear solvers, optimization, computational steering, visualization, and experimental data verification  Very large-scale simulations  Computer science problems:  Coupling of multiple simulation codes  Software engineering across diverse expert teams  Achieving high performance on large-scale systems

85 Example C-SAFE Simulation Problems ∑ Heptane fire simulation Material stress simulation Typical C-SAFE simulation with a billion degrees of freedom and non-linear time dynamics

86 Uintah High-Level Component View

87 Uintah Computational Framework  Execution model based on software (macro) dataflow  Exposes parallelism and hides data transport latency  Computations expressed a directed acyclic graphs of tasks  consumes input and produces output (input to future task)  input/outputs specified for each patch in a structured grid  Abstraction of global single-assignment memory  DataWarehouse  Directory mapping names to values (array structured)  Write value once then communicate to awaiting tasks  Task graph gets mapped to processing resources  Communications schedule approximates global optimal

88 Uintah Task Graph (Material Point Method)  Diagram of named tasks (ovals) and data (edges)  Imminent computation  Dataflow-constrained  MPM  Newtonian material point motion time step  Solid: values defined at material point (particle)  Dashed: values defined at vertex (grid)  Prime (‘): values updated during time step

89 Uintah PSE  UCF automatically sets up:  Domain decomposition  Inter-processor communication with aggregation/reduction  Parallel I/O  Checkpoint and restart  Performance measurement and analysis (stay tuned)  Software engineering  Coding standards  CVS (Commits: Y3 - 26.6 files/day, Y4 - 29.9 files/day)  Correctness regression testing with bugzilla bug tracking  Nightly build (parallel compiles)  170,000 lines of code (Fortran and C++ tasks supported)

90 Performance Technology Integration  Uintah present challenges to performance integration  Software diversity and structure  UCF middleware, simulation code modules  component-based hierarchy  Portability objectives  cross-language and cross-platform  multi-parallelism: thread, message passing, mixed  Scalability objectives  High-level programming and execution abstractions  Requires flexible and robust performance technology  Requires support for performance mapping

91 Task execution time dominates (what task?) MPI communication overheads (where?) Task Execution in Uintah Parallel Scheduler  Profile methods and functions in scheduler and in MPI library Task execution time distribution  Need to map performance data!

92 Semantics-Based Performance Mapping  Associate performance measurements with high-level semantic abstractions  Need mapping support in the performance measurement system to assign data correctly

93 Semantic Entities/Attributes/Associations (SEAA)  New dynamic mapping scheme  Entities defined at any level of abstraction  Attribute entity with semantic information  Entity-to-entity associations  Two association types (implemented in TAU API)  Embedded – extends data structure of associated object to store performance measurement entity  External – creates an external look-up table using address of object as the key to locate performance measurement entity

94 Uintah Task Performance Mapping  Uintah partitions individual particles across processing elements (processes or threads)  Simulation tasks in task graph work on particles  Tasks have domain-specific character in the computation  “interpolate particles to grid” in Material Point Method  Task instances generated for each partitioned particle set  Execution scheduled with respect to task dependencies  How to attributed execution time among different tasks  Assign semantic name (task type) to a task instance  SerialMPM::interpolateParticleToGrid  Map TAU timer object to (abstract) task (semantic entity)  Look up timer object using task type (semantic attribute)  Further partition along different domain-specific axes

95 Using External Associations  Two level mappings:  Level 1:  Level 2:  Embedded association vs External association Data (object) Performance Data... Hash Table

96 Task Performance Mapping Instrumentation void MPIScheduler::execute(const ProcessorGroup * pc, DataWarehouseP & old_dw, DataWarehouseP & dw ) {... TAU_MAPPING_CREATE( task->getName(), "[MPIScheduler::execute()]", (TauGroup_t)(void*)task->getName(), task->getName(), 0);... TAU_MAPPING_OBJECT(tautimer) TAU_MAPPING_LINK(tautimer,(TauGroup_t)(void*)task->getName()); // EXTERNAL ASSOCIATION... TAU_MAPPING_PROFILE_TIMER(doitprofiler, tautimer, 0) TAU_MAPPING_PROFILE_START(doitprofiler,0); task->doit(pc); TAU_MAPPING_PROFILE_STOP(0);... }

97 Task Performance Mapping (Profile) Performance mapping for different tasks Mapped task performance across processes

98 Task Performance Mapping (Trace) Work packet computation events colored by task type Distinct phases of computation can be identifed based on task

99 Task Performance Mapping (Trace - Zoom) Startup communication imbalance

100 Task Performance Mapping (Trace - Parallelism) Communication / load imbalance

101 Comparing Uintah Traces for Scalability Analysis 8 processes 32 processes

102 Scaling Performance Optimizations Last year: initial “correct” scheduler Reduce communication by 10 x Reduce task graph overhead by 20 x ASCI Nirvana SGI Origin 2000 Los Alamos National Laboratory

103 Scalability to 2000 Processors (Fall 2001) ASCI Nirvana SGI Origin 2000 Los Alamos National Laboratory

104 Concluding Remarks  Complex software and parallel computing systems pose challenging performance analysis problems that require robust methodologies and tools  To build more sophisticated performance tools, existing proven performance technology must be utilized  Performance tools must be integrated with software and systems models and technology  Performance engineered software  Function consistently and coherently in software and system environments  PAPI and TAU performance systems offer robust performance technology that can be broadly integrated

105 Information  TAU (http://www.acl.lanl.gov/tau)  PDT (http://www.acl.lanl.gov/pdtoolkit)  PAPI (http://icl.cs.utk.edu/projects/papi/)  OPARI (http://www.fz-juelich.de/zam/kojak/)

106 Support Acknowledgement  TAU and PDT support:  Department of Energy (DOE)  DOE 2000 ACTS contract  DOE MICS contract  DOE ASCI Level 3 (LANL, LLNL)  U. of Utah DOE ASCI Level 1 subcontract  DARPA  NSF National Young Investigator (NYI) award


Download ppt "Performance Technology for Complex Parallel Systems Sameer Shende, Allen D. Malony University of Oregon."

Similar presentations


Ads by Google