Download presentation
Presentation is loading. Please wait.
1
Bab 5-3 Image Processing and Analysis
2
Objektif Boleh mengetahui langkah-langkah yg terlibat di dalam Fungsi II Boleh menghuraikan keperluan dan fungsi setiap langkah Boleh membezakan elemen yang terlibat dalam setiap langkah
3
Kandungan Pengenalan Image Data Reduction Segmentation Feature Extraction Object Recognition Kesimpulan
4
Pengenalan Turutan langkah dlm Fungsi II: –Image Data Reduction –Segmentation –Feature extraction –Object recognition Jumlah dan amaun data imej sangat besar perlu diproses dalam masa yang singkat Pelbagai teknik utk kurangkan magnitud bagi memastikan pemprosesan dan analisis imej boleh dilakukan
5
IMAGE DATA REDUCTION Objektif –Kurangkan volume/amaun data Dua skema dalam data reduction –Digital conversion –Windowing Fungsi kedua-dua skema, utk menghapuskan bottleneck yg terhasil akibat volume data
6
IMAGE DATA REDUCTION Digital Conversion –Mengurangkan nombor tahap gray yg digunakan oleh sistem machine vision –Bergantung kpd keperluan aplikasi, boleh kurangkan bilangan tahap gray dgn gunakan bits yg kurang utk mewakili kepekatan cahaya pixel –Contoh: menggunakan 8 bit menghasilkan 256 gray levels, kurang 4 bit menghasilkan hanya 16 gray levels
7
IMAGE DATA REDUCTION Windowing –Menggunakan a portion dari imej keseluruhan (frame buffer) utk diproses dan dianalisis –Portion digelar window –Pengenalpastian objek secara tepat hanya pada bahagian yg dikehendaki sahaja –Contoh: inspection PCB Rectangular window akan pilih kawasan yg diingini, pixels pada window shj akan dianalisis
8
SEGMENTATION Term biasa yg digunakan utk pelbagai kaedah selepas data reduction Objektif –Utk kumpulkan kawasan imej yg mempunyai sifat/features yg sama kepada entiti yg mewakili sebahagian imej –Contoh: kumpul ikut boundaries/regions –Teknik-teknik segmentation Thresholding Region growing Edge detection
9
Thresholding Sangat simple Teknik Binary conversion, setiap pixel ditukar menjadi nilai binary (hitam atau putih) Berdasarkan julat B&W, ditentukan dari histogram imej Teknik segmentation yg plg meluas digunakan dalam aplikasi industrial vision Mudah, cepat dan kaedah lighting yg senang dikawal
10
Region Growing Koleksi teknik segmentation, dimana pixels dikumpulkan dalam region (grid elements) berdasarkan persamaan atribut Regions yg didefinisikan akan dianalisis utk tentukan sama ada ia independent atau boleh digabungkan dgn regions lain Sesuai utk imej objek yg mudah, imej yg kompleks, teknik ini kurang sesuai Teknik ini digunakan bila dua: –Teknik lain tidak boleh digunakan –Teknik lighting tidak boleh dikawal
11
Edge detection Mengambil kira perubahan intensity pixels pada boundary/edges part Jika region(atribut yg sama) dijumpai tapi bentuk boundary tidak diketahui, maka teknik ini sesuai digunakan
12
FEATURE EXTRACTION Dari segmentation, perbezaan dibuat ke atas objek berdasarkan kepada features yg memberi sifat yg unik kpd objek Feature = satu parameter yg membenarkan perbandingan dan pengenalan antara objek –Area,diameter dan perimeter Boleh kenalpasti objek atau part dan tentukan lokasi part atau orientasinya
13
OBJECT RECOGNITION Utk kenalpasti objek yg diwakili oleh imej, menggunakan maklumat dari feature extraction Kenalpasti objek (imej) dan membuat klasfikasi Perlukan recognition algorithm yg berkuasa utk kenalpasti objek secara unik 2 teknik utama –Template-matching –Structural
14
Template-matching techniques Subset kepada kebykan teknik statistical pattern recognition yg kelaskan objek (imej) kedalam kategori yg ditentukan Masalah biasa: utk matchkan objek dgn stored pattern (model template) Model template diperolehi semasa training Teknik ini boleh digunakan jika tidak memerlukan bilangan model template yg byk
15
Template-matching techniques Berdasarkan kepada bilangan features Perbandingan antara features pada objek dgn stored values Bila match dijumpai (guna statistical variations), maka objek telah diklasfikasikan
16
Structural techniques Mengambilkira hubungan antara features/edges objek Teknik yg digunakan: –Syntactic pattern Menggunakan elemen penghasilan sesuatu bentuk objek Agak sukar utk lengkapkan pattern recognition secara lengkap Lebih mudah utk cari regions/edges yg lebih simple Kebanyakan industri robotik guna approach ringkas terutamanya recognition 2D
17
Kesimpulan Fungsi II dimana imej digital objek akan dianalisis Melibatkan reduction data, segmentation, feature extraction dan object recognition Setiap langkah mempunyai fungsi dan teknik yg berbeza-beza
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.