Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Assembly Process Basically how does it all work.

Similar presentations


Presentation on theme: "The Assembly Process Basically how does it all work."— Presentation transcript:

1 The Assembly Process Basically how does it all work

2 CMPE12cCyrus Bazeghi 2 A computer understands machine code - binary People (and compilers) write assembly language Assembler Assembly code Machine code The Assembly Process

3 CMPE12cCyrus Bazeghi 3 The Assembly Process An assembler is a program that translates each instruction to its binary machine code equivalent. It is a relatively simple program There is a one-to-one or near one-to-one correspondence between assembly language instructions and machine language instructions. Assemblers do some code manipulation Like MAL to TAL Label resolution A “macro assembler” can process simple macros like puts, or preprocessor directives.

4 CMPE12cCyrus Bazeghi 4 MAL  TAL MAL is the set of instructions accepted by the assembler. TAL is a subset of MAL – the instructions that can be directly turned into machine code. There are many MAL instructions that have no single TAL equivalent. To determine whether an instruction is a TAL instruction or not: Look in appendix C or on the MAL/TAL sheet. The assembler takes (non MIPS) MAL instructions and synthesizes them into 1 or more MIPS instructions.

5 CMPE12cCyrus Bazeghi 5 MAL  TAL mul $8, $17, $20 For example Becomes MIPS has 2 registers for results from integer multiplication and division: HI and LO Each is a 32 bit register mult and multu places the least significant 32 bits of its result into LO, and the most significant into HI. Multiplying two 32-bit numbers gives a 64-bit result (2 32 – 1)(2 32 – 1) = 2 64 – 2x2 32 - 1 mult $17, $20 mflo $8

6 CMPE12cCyrus Bazeghi 6 MAL  TAL mflo, mtlo, mfhi, mthi Move From loMove To hi Data is moved into or out of register HI or LO One operand is needed to tell where the data is coming from or going to. For division (div or divu) HI gets the remainder LO gets the dividend Why aren’t these just put in $0-$31 directly?

7 CMPE12cCyrus Bazeghi 7 MAL  TAL TAL has only base displacement addressing So this: lw $8, label Becomes: la $7, label lw $8, 0($7) Which becomes lui $8, 0xMSPART of label ori $8, $8, 0xLSpart of label lw $8, 0($8)

8 CMPE12cCyrus Bazeghi 8 MAL  TAL Instructions with immediate values are synthesized with other instructions So:add $sp, $sp, 4 Becomes:addi $sp, $sp, 4 For TAL: add requires 3 operands in registers. addi requires 2 operands in registers and one operand that is an immediate. In MIPS assembly immediate instructions include: addi, addiu, andi, lui, ori, xori Why not more?

9 CMPE12cCyrus Bazeghi 9 MAL  TAL TAL implementation of I/O instructions This: putc $18# if you got to use macros Becomes: addi$2, $0, 11# code for putc add$4, $18, $0# put character argument in $4 syscall# ask operating system to do a function

10 CMPE12cCyrus Bazeghi 10 MAL  TAL getc$11 Becomes: addi$2, $0, 12 syscall add$11, $0, $2 puts$13 Becomes: addi$2, $0, 4 add$4, $0, $13 syscall done Becomes: addi$2, $0, 10 syscall

11 CMPE12cCyrus Bazeghi 11 MAL  TAL MALTAL Arithmetic Instructions: move $4, $3add $4, $3, $0 add $4, $3, 15addi $4, $3, 15 # also andi, ori,.. mul $8, $9, $10mult $9, $10 #HI || LO  product # never overflow mflo $8 # $8  $L0, ignore $HI! div $8, $9, $10div $9, $10 # $LO  quotient # $HI  remainder mflo $8 rem $8, $9, $10div $9, $10 mfhi $8

12 CMPE12cCyrus Bazeghi 12 MAL  TAL MALTAL Branch Instructions: bltz, bgez, blez, bgtz, beqz, bnez, blt, bge, bgt, beq, bne bltz, bgez, blez, bgtz, beq, bne beqz $4, loopbeq $4, $0, loop blt $4, $5, targetslt $t0, $4, $5 # $t0 is 1 if $4 < $5 # $t0 is 0 otherwise bne $t0, $0, target

13 CMPE12cCyrus Bazeghi 13 Assembler The assembler will: Assign addresses Generate machine code If necessary, the assembler will: Translate (synthesize) from the accepted assembly to the instructions available in the architecture Provide macros and other features Generate an image of what memory must look like for the program to be executed.

14 CMPE12cCyrus Bazeghi 14 Assembler What should the assembler do when it sees a directive?.data.text.space,.word,.byte,.float main: How is the memory image formed?

15 CMPE12cCyrus Bazeghi 15 Assembler Example Data Declaration Assembler aligns data to word addresses unless told not to. Assembly process is very sequential..data a1:.word 3 a2:.byte ‘\n’ a3:.space 5 AddressContents 0x000010000x00000003 0x000010040x??????0a 0x000010080x???????? 0x0000100c0x????????

16 CMPE12cCyrus Bazeghi 16 Machine code generation opcode is 6 bits – addi is defined to be 001000 rs – source register is 5 bits, encoding of 20, 10100 rt – target register is 5 bits, encoding of 8, 01000 The 32-bit instruction for addi $8, $20, 15 is: 001000 10100 01000 0000000000001111 Or 0x2288000f Assembly language:addi $8, $20, 15 opcode rtrs immediate 310 opcodersrtimmediate Machine code format:

17 CMPE12cCyrus Bazeghi 17 Instruction Formats I-Type Instructions with 16-bit immediates ADDI, ORI, ANDI, … LW, SW BNE OPC:6rs1:5rd:5immediate:16 OPC:6rs1:5rs2/rddisplacement:16 OPC:6rs1:5rs2:5distance(instr):16

18 CMPE12cCyrus Bazeghi 18 Instruction Formats J-Type Instructions with 26-bit immediate J, JAL R-Type All other instructions ADD, AND, OR, JR, JALR, SYSCALL, MULT, MFHI, LUI, SLT OPC:626-bits of jump address OPC:6rs1:5rs2:5ALU function:11rd:5

19 CMPE12cCyrus Bazeghi 19 Assembly Example.data a1:.word3 a2:.word16:4 a3:.word5.text main: la $6, a2 loop:lw $7, 4($6) mul $8, $9, $10 b loop done “Symbol Table” SymbolAddress a10040 0000 a20040 0004 a30040 0014 main0080 0000 loop0080 0008

20 CMPE12cCyrus Bazeghi 20 Assembly Example addressContents (hex)Contents (binary) 0040 00000000 00030000 0000 0000 0000 0000 0000 0000 0011 0040 00040000 00100000 0000 0000 0000 0000 0000 0001 0000 0040 00080000 00100000 0000 0000 0000 0000 0000 0001 0000 0040 000c0000 00100000 0000 0000 0000 0000 0000 0001 0000 0040 00100000 00100000 0000 0000 0000 0000 0000 0001 0000 0040 00140000 00050000 0000 0000 0000 0000 0000 0000 0101 Memory map of.data section

21 CMPE12cCyrus Bazeghi 21 Assembly Example Translation of MAL to TAL code.text main:lui $6, 0x0040# la $6, a2 ori $6, $6, 0x0004 loop:lw $7, 4($6) mult $9, $10# mul $8, $9, $10 mflo $8 beq $0, $0, loop# b loop ori $2, $0, 10# done syscall

22 CMPE12cCyrus Bazeghi 22 addressContents (hex) Contents (binary) 0080 00003c06 0040 0011 1100 0000 0110 0000 0000 0100 0000 (lui) 0080 000434c6 0004 0011 0100 1100 0110 0000 0000 0000 0100 (ori) 0080 00088cc7 0004 1000 1100 1100 0111 0000 0000 0000 0100 (lw) 0080 000c012a 0018 0000 0001 0010 1010 0000 0000 0001 1000 (mult) 0080 00100000 4012 0000 0000 0000 0000 0100 0000 0001 0010 (mflo) 0080 00141000 fffc 0001 0000 0000 0000 1111 1111 1111 1100 (beq) 0080 00183402 000a 0011 0100 0000 0010 0000 0000 0000 1010 (ori) 0080 001C0000 000c 0000 0000 0000 0000 0000 0000 0000 1100 (sys) Memory map of.text section Assembly Example

23 CMPE12cCyrus Bazeghi 23 At execution time: PC  NPC + {sign extended offset field,00} PC points to instruction after the beq when offset is added. At assembly time: Byte offset= target addr – (address of branch + 4) = 00800008 – (00800010 + 00000004) = FFFFFFF4 (-12) Branch offset computation Assembly Example

24 CMPE12cCyrus Bazeghi 24 4 important observations: Offset is stored in the instruction as a word offset An offset may be negative The field dedicated to the offset is 16 bits, range is thus limited More simply: Just count the number of instructions from instruction following branch to target, encode that as a 16-bit value Assembly Example

25 CMPE12cCyrus Bazeghi 25 Assembly At execution time: PC  {most significant 4 bits of PC, target field, 00} At assembly time: Take 32 bit target address Eliminate least significant 2 bits (since word aligned) Eliminate most significant 4 bits What remains is 26 bits, and goes in the target field Jump target computation

26 CMPE12cCyrus Bazeghi 26 Linking N’ Loading The process of building/configuring the executable, placing it in memory, and running it.

27 CMPE12cCyrus Bazeghi 27 Linking and Loading Searches libraries Reads object files Relocates code/data Resolves external references Creates object file Linker

28 CMPE12cCyrus Bazeghi 28 Creates address spaces for text & data Copies text & data in memory Initializes stack and copy args Initializes regs (maybe) Initializes other things (OS) Jumps to startup routine –And then to address of “main:” Loader Linking and Loading

29 CMPE12cCyrus Bazeghi 29 Object file Linking and Loading Section:Description: HeaderStart/size of other parts TextMachine Language DataStatic data – size and initial values Relocation infoInstructions and data with absolute addresses Symbol tableAddresses of external labels Debuggin` infoBreak points

30 CMPE12cCyrus Bazeghi 30 Linking and Loading The data section starts at 0x0040 0000 for the MIPS processor. If the source code has,.data a1:.word 15 a2:.word –2 then the assembler specifies initial configuration memory as address:contents: 0x004000000000 0000 0000 0000 0000 0000 0000 1111 0x004000041111 1111 1111 1111 1111 1111 1111 1110 Like the data, the code needs to be placed starting at a specific location to make it work

31 CMPE12cCyrus Bazeghi 31 Linking and Loading Consider the case where the assembly language code is split across 2 files. Each is assembled separately. File 1:.data a1:.word 15 a2:.word –2.text main:la $t0, a1 add $t1, $t0, $s3 jal proc5 done.data a3:.word 0.text proc5:lw $t6, a1 sub $t2, $t0, $s4 jr $ra File2:

32 CMPE12cCyrus Bazeghi 32 Linking and Loading What happens to… a1 a3 main proc5 lw la jal

33 CMPE12cCyrus Bazeghi 33 Linking and Loading Problem: there are absolute addresses in the machine code. Solutions: 1.Only allow a single source file Why not? 2.Allow linking and loading to Relocate pieces of data and code sections Finish the machine code where symbols were left undefined Basically makes absolute address a relative address

34 CMPE12cCyrus Bazeghi 34 Linking and Loading The assembler will: Start both data and code sections at address 0, for all files. Keep track of the size of every data and code section. Keep track of all absolute addresses within the file.

35 CMPE12cCyrus Bazeghi 35 Linking and loading will: Assign starting addresses for all data and code sections, based on their sizes. The blocks of data and code go at non- overlapping locations. Fix all absolute addresses in the code Place the linked code and data in memory at the location assigned Start it up Linking and Loading

36 CMPE12cCyrus Bazeghi 36 MIPS Example Code levels of abstraction (from James Larus) “C” code #include int main (int argc, char *argv[]) { int I; int sum = 0; for (I=0; I<=100; I++) sum += I * I; printf (“The sum 0..100=%d\n”,sum); } Compile this HLL into a machine’s assembly language with the compiler.

37 CMPE12cCyrus Bazeghi 37 MIPS Example.text main: subu$sp, 32 sw$31, 20($sp) sw$4, 32($sp) sw$0, 24($sp) sw$0, 28($sp) loop: lw$14, 28($sp) mul$15, $14, $14 lw$24, 24($sp) addu$25, $24, $15 sw$8, 28($sp) ble$8, 100, loop la$4, str lw$5, 24($sp) jalprintf move$2, $0 lw$31, 20($sp) addu$sp, 32 jr$31.data str:.asciiz “The sum 0..100=%d\n” Converted into MAL…

38 CMPE12cCyrus Bazeghi 38 addiu$sp, $sp,-32 sw$ra, 20($sp) sw$a0, 32($sp) sw$a1, 36($sp) sw$0, 24($sp) sw$0, 28($sp) lwt6, 28($sp) lw$t8, 24($sp) multu$t6, $t6 addiu$t0, $t6, 1 slti$at, $t0, 101 sw$t0, 28($sp) mflo$t7 addu$t9, $t8, $t7 bne$at, $0, -9 sw$t9, 24($sp) lui$a0,4096 lw$a1, 24($sp) jal1048812 addiu$a0, $a0, 1072 lw$ra, 20($sp) addiu$sp, $sp, 32 jr$ra Which the assembler then translates into binary machine code for instructions and data. Now resolve the labels and convert to MIPS… MIPS Example

39 CMPE12cCyrus Bazeghi 39 Real MIPS Machine language 00100111101111011111111111100000 10101111101111110000000000010100 10101111101001000000000000100000 10101111101001010000000000100100 10101111101000000000000000011000 10101111101000000000000000011100 10001111101011100000000000011100 10001111101110000000000000011000 00000001110011100000000000011001 00100101110010000000000000000001 00101001000000010000000001100101 10101111101010000000000000011100 00000000000000000111100000010010 00000011000011111100100000100001 00010100001000001111111111110111 10101111101110010000000000011000 00111100000001000001000000000000 10001111101001010000000000011000 00001100000100000000000011101100 00100100100001000000010000110000 10001111101111110000000000010100 00100111101111010000000000100000 00000011111000000000000000001000 00000000000000000001000000100001 MIPS Example


Download ppt "The Assembly Process Basically how does it all work."

Similar presentations


Ads by Google