Download presentation
Presentation is loading. Please wait.
1
Tao Zhang Gordon Smith Ken Goldberg ALPHA Lab, UC Berkeley The Toppling Graph: Designing Pin Sequence for Part Feeding Robert-Paul Berretty Mark Overmars CS Dept., Utrecht Univ.
2
The Problem:
3
Pin Sequence Design: An Example
4
The Solution: Designing Pin Sequence
5
Related Work Lozano-Perez [86]: part feeding as a dual of motion planning Erdmann and Mason [88]: sensorless manipulation Trinkle [92]: orienting parts in the vertical plane using gripper Goldberg [93]: orienting parts in the horizontal plane using gripper
6
Fences over conveyor belts: –Peshkin and Sanderson [88]: a numerical search algorithm –Akella et al. [97]: 1-JOC analysis –Berretty et al. [97]: a polynomial-time algorithm –Wiegley et al. [98]: a complete algorithm Toppling manipulation –Lynch [99]: toppling analysis –Zhang et al. [00]: compensatory grasping
7
Compute critical pin heights Approach Plan pin sequence
8
Critical Pin Heights Toppling Graph
9
Radius function R( ): height of the COM as the part rotates Vertex height functions V i ( ): height of vertex i as the part rotates Functions
10
Rolling Height Function X Z
11
1 w il ( ) = (2 t z i cos il – cos( il - ) – cos il - 2 t x i sin il + t sin( il - ) + t sin il ) / (2 t sin( il - i )), H il ( ) = x i sin + z i cos + w il sin( i + ). Rolling Height Function: Computation
12
Rolling Height Function: Graph h =c=c cc h =0
13
Jamming Height Functions X Z
14
Toppling Graph B BBB
15
Physical Experiment using an Adept Flex Feeder conveyor belt; t = 53 2 and p = 5 2 . Comparison of prediction with experiment.
16
Pin Planning
17
Pin Planning (Cont.) Total running time: O(n 3n ) in the worst case n n -1 1 O(n3)O(n3) O(n3)O(n3) O(n3)O(n3)
18
Conclusion Toppling Graph –Vertex height functions –Rolling height functions –Jamming height functions Pin sequence planning
19
Future Work Optimal gripper jaw design -- topple parts by a set of pins
20
Future Work(Cont.)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.