Download presentation
Presentation is loading. Please wait.
1
D. Raparia2005/01/27-28 EBIS Review EBIS Injector Linac Optics I D.Raparia EBIS Review 2005/01/27-28 LEBT RFQ MEBT LINAC
2
D. Raparia2005/01/27-28 EBIS Review Acknowledgements Contributors: J. Alessi, E. Beebe, S. Pikin, A. Kponou, J. Ritter, C. Gardner, S. Y. Zhang, T. Roser B. Schlitt, U. Ratzinger
3
D. Raparia2005/01/27-28 EBIS Review Requirements EBIS based linac should provide all the ions species which presently Tandem provides * Out of EBIS Linac scope
4
D. Raparia2005/01/27-28 EBIS Review 4 m 4.4 m RFQ: 17 - 300 keV/u; 100 MHz IH Linac: 0.3 - 2.0 MeV/u; 100 MHz Proposed Linac –Based RHIC Preinjector LEBT MEBT HEBT Ion U - D Charge38 – 1 (q/m =.16-0.5) Current1.5 emA (for 1 turn inj) Pulse Length Rep. Rate Duty Factor 10 s 5 Hz 0.0005 % Emittance 0.7 mm rad (nor, 90%) Energy Spread 1.8 keV/amu
5
D. Raparia2005/01/27-28 EBIS Review Schematic of Ion Injection and Extraction from the RHIC EBIS (LEBT)
6
2003/3/10-11 MAC Review D. Raparia LEBT Requirements -Inject into EBIS -Extract from EBIS -Acceleration -Diagnostics: Emittance Monitor, Current Monitor(2), TOF -Matching into RFQ Twiss parameters at beginning and end of the LEBT for Au +32 E = 17 keV/u =0.006017 =1.000018 E = 5 keV/u =0.0033 =1.000005 ParametersBeginning of LEBT (5 keV/u) Middle of LEBT 17keV /u End of LEBT Units xx -5.32.021.057 xx 0.8006.040.064 mm/mrad x (4 rms, unnorm) 15285 mm mrad yy -5.32.021.057 yy 0.806.040.064 mm/mrad y(4 rms, unnorm) 15285 mm mrad
7
2003/3/10-11 MAC Review D. Raparia Charge State Distribution Computer calculation of successive ionization of Au with a 20keV electron beam:
8
2003/3/10-11 MAC Review D. Raparia Space Charge in LEBT Envelope equation Gen. Perv. (K)= QI/(2 0 m c 3 3 3 ) Debye Length( D ) = 2 2 rms /K Current 10 mA, R=20 mm Measurement for 1.7 mA Au +25 (n,rms) =0.1 mm mrad @ 20keV Simulated(n,rms) =0.125 mm mrad Energy = 17 keV/u =0.006017 =1.000018 R= 20 mm * EPS(n, rms)=0.125 mm mrad ** I =6 mA
9
2003/3/10-11 MAC Review D. Raparia LEBT Energy Distance needed between two lenses for external ion injection (L) ~ 0.8 m. Beam radius (R) ~ 2.0 cm, Lenses (solenoid) aperture radius 5 cm Maximum beam current for SC dominated drift (L), maximum beam radius (R) and initial slop R ’ 0 =-0.92 given by I max (A)=1.166*(mc 2 /30*q)* 3 3 (R/L) 2 I max (mA) E=8.5 keV/uE=17 keV/u D3.010.0 Au +32 10.030.0 L 2R R ’ 0 =-0.92
10
2003/3/10-11 MAC Review D. Raparia Investigated possible layouts for LEBT Magnetic: Lower aberrations, need higher filed, separates charge estate Electrostatic: Chromatic aberrations, screen reduce aberrations but also reduces intensity.
11
2003/3/10-11 MAC Review D. Raparia Starting Conditions for LEBT EBIS simulation by code TRAK (Kponou) generate input parameters for ion extraction/ acceleration for LEBT E (keV) (m) (rms, norm) mm mrad Au +32 (10 mA)970-5.30.80.125 3 He +2 (10 mA)15-3.60.60.123 E = 5 keV/u =0.0033 =1.000005 DT12 e ions B=0.15 T Starting Conditions R= 0.5 mm R ’ ( ) 2.5 Rad
12
2003/3/10-11 MAC Review D. Raparia LEBT Simulation in Two Parts Extraction/acceleration and LEBT simulation has been done in two part (1)extraction/ acceleration and grid lens are electrostatic and are simulated with AXCEL with full space charge (2) Later part of the LEBT consist of solenoid lens is simulated with TRACE with linear space charge ElectrostaticElectrostatic Electrostatic AXCEL Magnetic Trace
13
2003/3/10-11 MAC Review D. Raparia LEBT Electrostatic V1V2 V3 V4V5V6 ElectrodeVoltage (kV) Extraction/Acceleration V1-8 V2+76 V30 Grid Lens V40 V5-21 V60 17 kev/u 4 keV/u 15 keV/u 5 kev/u Au +32
14
2003/3/10-11 MAC Review D. Raparia LEBT Solenoid B=7.8 kG L=37.1 cm R (mm) Np Scrivens @ CERN has reported hollow beam in solenoid transport (Reproduced this in our codes) Codes did not show hollow beam for our case R (mm) Np R (mm) Np TRACE2D E=8.5 keV/u,I=2mA
15
2003/3/10-11 MAC Review D. Raparia Beam Parameters at End of LEBT IonsE (MeV) Curr (mA) Tran (%) X-XP 5 rms, Unnor, ( mm mrad) Y-YP 5 rms, Unnor, ( mm mrad) Au +32 3.210.01001.060.0631251.060.06125 Au +31 3.110.01000.9940.0631250.9940.063125 Au +30 3.010.01001.1110.0941251.1110.094125 Au +33 3.310.01001.1180.0571251.1180.057125 Au +34 3.410.01001.4320.1191251.4320.119125 He +2 0.68101001.060.0641251.600.064125 Phase space ellipses at end of the LEBT For different charge state of gold
16
2003/3/10-11 MAC Review D. Raparia RFQ Parameters ParametersBNLCERNUnits Type4-rod Q/m0.16-0.50.12 Energy in17.02.5keV/amu Energy out300250keV/amu Frequency101.28 MHz Max rep rate510Hz Length4.372.5Meters # of cells277 Aperture0.005.0045Meters Voltage6970kV E (surface)20.8 23 MV/m RF Power< 350 kW Acceptance1.7> 0.8 mm mrad (nor) Input Emit.0.35 mm mrad, nor, 90% Output Emit. (trans)0.375 mm mrad, nor, 90% Output Emit. (longit)32.5 MeV deg Transmission9193% Bravery factor1.8 2 Kilpatrick -Proven technology, No risks -Can accelerate He- Au (Present thinking- collaboration Frankfurt on a 4-rod RFQ
17
2003/3/10-11 MAC Review D. Raparia RFQ Beam Dynamics Design PARMTEQ Transmission: Au +32 91% (10 mA) 4 He +2 91 % (10 mA) 3 He +2 88% (2 mA) P 65% (2 mA)
18
2003/3/10-11 MAC Review D. Raparia Beam envelopes for Au +31 (example of neighboring charge state)
19
2003/3/10-11 MAC Review D. Raparia RFQ Transmission RFQ transmission vs Input EmittanceRFQ transmission for different charge state of gold RFQ transmission vs input voltage error (Nominal operating voltage 100 kV) RFQ Transmission vs input Current
20
2003/3/10-11 MAC Review D. Raparia Long. Emittance Growth vs Energy Spread
21
2003/3/10-11 MAC Review D. Raparia Twiss Parameters at End of RFQ IonsEnergy (MeV) Curr (mA) Tran (%) X-XP 5 rms, Unnor ( mm mrad) Y-YP 5rms,Unnor,( mm mrrad) 5 rms, MeV deg) (m) (m) (deg/MeV) Au +32 62.0010911.80.18024-1.590.14222.5-0.2213.332.5 Au +31 61.0810861.60.15227-1.250.13820.5-0.0427.140.3 Au +30 62.0810551.60.16230-1.160.138200.9727.5105 Au +33 61.8710581.50.16426-1.05.10821-0.0817.240.9 Au +34 100 He +2 1.25910911.70.2824.5-0.860.11725.5-0.13615.91.055 X-XP PlaneY-YP Plane Plane Simulation show no emittance growth for Au +32
22
2003/3/10-11 MAC Review D. Raparia Requirements for MEBT -Matching from FODO (RFQ) to axial symmetric IH structure with Solenoids -Diagnostics; Current monitor(2), Emittance Twiss parameters at beginning and end of the MEBT ParametersEnd of RFQEntrance of IHUnits XX 1.81.802 XX 0.181.01mm/mrad X (5* rms,unnorm) 24 mm mrad YY -1.390.60 YY 0.1420.59 Y (5* rms,unnorm) 22 mm mrad ZZ 0.0540.59 ZZ 0.02030.0009deg/keV Z (5* rms,unnorm)Au +32 34168 deg keV
23
2003/3/10-11 MAC Review D. Raparia Space Charge In MEBT Energy = 300 keV/u =0.025272 =1.000319 R= 3 mm I=5 mA * EPS(N, rms)=0.125
24
2003/3/10-11 MAC Review D. Raparia Transport from RFQ to Linac (5 quads, 1 buncher) Q1 (pmq)101 T/m Q2 (EM)33 T/m Q3 (EM)38 T/m Q4 (EM)36 T/m Q5 (EM)38 T/m B1150 kV EM quads same as SNS MEBT quads Au +32 XI= 1.8*0.9 + 1.5*0.86 + 1.5*0.58* + 1.2*.55 + 0.8*.24=4.6 mA Au +32 Au +31 Au +33 Au +30 Au +29
25
2003/3/10-11 MAC Review D. Raparia IH Linac IH Linac very similar to the first tank of the CERN Pb linac, is our baseline:, (Present thinking – collaboration with GSI on an IH Linac)
26
D. Raparia2005/01/27-28 EBIS Review IH linac optics codes LORAS used in this preliminary design Transverse profiles in the IH linac Longitudinal profiles in the IH linac Au +32 Current = 4.6 mA
27
D. Raparia2005/01/27-28 EBIS Review IH Linac Input and Output Emittances Au +32 InputOutput N, 98% N, 98% % X-XP ( mm mrad).55.66 20 Y-YP ( mm mrad).54.67 24 ( ( ns/keV/u).92 1.32 41 I=4.6 mA
28
D. Raparia2005/01/27-28 EBIS Review Beam envelopes for Au +30 Longitudinal profiles in the IH linac Transverse profiles in the IH linac (example of neighboring charge state)
29
D. Raparia2005/01/27-28 EBIS Review Twiss Parameters End of Linac IonsCurr. (mA) Trans. (%) X-XP Unnorm, 5rms ( mmmr) Y-YP Unnorm, 5 rms ( mmmr) 5 rms( MeV deg) (m) (deg/MeV) Au +32 4.61002.11.9711.0-1.593.4510.3-0.685.435.0 Au +31 4.655.81.010.6041.00.0251.4731.35.2114.590.72 Au +30 4.60 Au +33 4.6851.772.7311.2-1.123.6110.00.713.554.8 Au +34 He +2 10851.561.010.440.281.59.70.81.215 X-XP PlaneY-YP Plane Plane Current Out =1.8*0.9*1.0 + 1.5*0.86*0.56 + 1.5*0.58*0.85=3.1 mA
30
D. Raparia2005/01/27-28 EBIS Review Emittance for Linac Energy (keV/u) Accpt. (N) ( mm mrad) Transverse (N, rms) ( mm mrad) Longitudinal (5 rms) Simulation Input Simulation Output MeV deg kev/u EBIS50.00330.1100.125-- LEBT170.00600.125 -- RFQ3000.0251.70.125 32.53 IH Linac20000.0654.30.1250.15335.020 Inflector20000.0651.90.153 35.01.8 * (Au +32 ) * Booster requirement 2keV/u Measurements: 0.1 (N, rms) ( mm mrad) Au +25 (all charge states) 1.7 mA Though simulations show only 22% transverse emittance growth, we have designed for 100% emittance growth from EBIS to Booster.
31
D. Raparia2005/01/27-28 EBIS Review Continue Part II
32
D. Raparia2005/01/27-28 EBIS Review Superconducting Linac Option -Allow acceleration of higher energies(> 6MeV/u for q/m=0.5) for higher q/m ions -Base on ALPI, ISAC-II and RIA, Technology -Two type of cavity ~0.04 and 0.08 The ALPI resonator Optimization of for maximum energy gain per cavity
33
D. Raparia2005/01/27-28 EBIS Review SCL Parameters ParameterValuesUnits Q/m0.16- 0.67 Input energy0.300 MeV/amu Output Energy2-7.5MeV/amu Frequency101.28MHz Max rep rate10Hz Input emittance0.55 mm mrad, norm,90% Output emittance ~ 0.6 mm mrad, norm,90% Transmission 100 % -Accelerating Gradient 7MV/m -Helium Consumption >7 Watt at 4.2K / resonator -Energy gain 5MeV/charge/cryostat -Three cryostats to produce 15 MeV for the SCL
34
D. Raparia2005/01/27-28 EBIS Review TRACE Simulation for SCL(AU)
35
D. Raparia2005/01/27-28 EBIS Review TRACE Simulation for SCL(D)
36
D. Raparia2005/01/27-28 EBIS Review Slop =0.92 L 2R
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.