Download presentation
Presentation is loading. Please wait.
1
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr
2
Aim Efficient, accurate MAP for truncated convex models V1V1 V2V2 ……… …………… …………… …………VnVn Random Variables V = { V 1, V 2, …, V n } Edges E define neighbourhood
3
Aim VaVa VbVb lili lklk ab;ik Accurate, efficient MAP for truncated convex models ab;ik = w ab min{ d(i-k), M } ab;ik i-k w ab is non-negative Truncated Linear i-k ab;ik Truncated Quadratic d(.) is convex a;i b;k
4
Motivation Low-level Vision Smoothly varying regions Sharp edges between regions min{ |i-k|, M} Boykov, Veksler & Zabih 1998 Well-researched !!
5
Things We Know NP-hard problem - Can only get approximation Best possible integrality gap - LP relaxation Manokaran et al., 2008 Solve using TRW-S, DD, PP Slower than graph-cuts Use Range Move - Veksler, 2007 None of the guarantees of LP
6
Real Motivation Gaps in Move-Making Literature LP Move- Making Potts Truncated Linear Truncated Quadratic 2 Multiplicative Bounds 2 + √2 O(√M) Chekuri et al., 2001
7
Real Motivation Gaps in Move-Making Literature LP Move- Making Potts Truncated Linear Truncated Quadratic 2 Multiplicative Bounds 2 2 + √2 2M O(√M)- Boykov, Veksler and Zabih, 1999
8
Real Motivation Gaps in Move-Making Literature LP Move- Making Potts Truncated Linear Truncated Quadratic 2 Multiplicative Bounds 2 2 + √2 4 O(√M)- Gupta and Tardos, 2000
9
Real Motivation Gaps in Move-Making Literature LP Move- Making Potts Truncated Linear Truncated Quadratic 2 Multiplicative Bounds 2 2 + √2 4 O(√M)2M Komodakis and Tziritas, 2005
10
Real Motivation Gaps in Move-Making Literature LP Move- Making Potts Truncated Linear Truncated Quadratic 2 Multiplicative Bounds 2 2 + √2 O(√M) 2 + √2 O(√M)
11
Outline Move Space Graph Construction Sketch of the Analysis Results
12
Move Space VaVa VbVb Initialize the labelling Choose interval I of L’ labels Each variable can Retain old label Choose a label from I Choose best labelling Iterate over intervals
13
Outline Move Space Graph Construction Sketch of the Analysis Results
14
Two Problems VaVa VbVb Choose interval I of L’ labels Each variable can Retain old label Choose a label from I Choose best labelling Large L’ => Non-submodular Non-submodular
15
First Problem VaVa VbVb Submodular problem Ishikawa, 2003; Veksler, 2007
16
First Problem VaVa VbVb Non-submodular Problem
17
First Problem VaVa VbVb Submodular problem Veksler, 2007
18
First Problem VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn
19
First Problem VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn
20
First Problem VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn
21
First Problem VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn
22
First Problem VaVa VbVb Model unary potentials exactly a m+1 a m+2 anan t b m+1 b m+2 bnbn
23
First Problem VaVa VbVb Similarly for V b a m+1 a m+2 anan t b m+1 b m+2 bnbn
24
First Problem VaVa VbVb Model convex pairwise costs a m+1 a m+2 anan t b m+1 b m+2 bnbn
25
First Problem VaVa VbVb Overestimated pairwise potentials Wanted to model ab;ik = w ab min{ d(i-k), M } For all l i, l k I Have modelled ab;ik = w ab d(i-k) For all l i, l k I
26
Second Problem VaVa VbVb Choose interval I of L’ labels Each variable can Retain old label Choose a label from I Choose best labelling Non-submodular problem !!
27
Second Problem - Case 1 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn s ∞∞ Both previous labels lie in interval
28
Second Problem - Case 1 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn s ∞∞ w ab d(i-k)
29
Second Problem - Case 2 VaVa VbVb Only previous label of V a lies in interval a m+1 a m+2 anan t b m+1 b m+2 bnbn s ∞ ubub
30
Second Problem - Case 2 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn u b : unary potential of previous label of V b M s ∞ ubub
31
Second Problem - Case 2 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn M w ab d(i-k) s ∞ ubub
32
Second Problem - Case 2 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn M w ab ( d(i-m-1) + M ) s ∞ ubub
33
Second Problem - Case 3 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn Only previous label of V b lies in interval
34
Second Problem - Case 3 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn s uaua ∞ u a : unary potential of previous label of V a M
35
Second Problem - Case 4 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn Both previous labels do not lie in interval
36
Second Problem - Case 4 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn s uaua ubub P ab : pairwise potential for previous labels ab P ab M M
37
Second Problem - Case 4 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn w ab d(i-k) s uaua ubub ab P ab M M
38
Second Problem - Case 4 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn w ab ( d(i-m-1) + M ) s uaua ubub ab P ab M M
39
Second Problem - Case 4 VaVa VbVb a m+1 a m+2 anan t b m+1 b m+2 bnbn P ab s uaua ubub ab P ab M M
40
Graph Construction VaVa VbVb Find st-MINCUT. Retain old labelling if energy increases. a m+1 a m+2 anan b m+1 b m+2 bnbn t ITERATE
41
Outline Move Space Graph Construction Sketch of the Analysis Results
42
Analysis VaVa VbVb Current labelling f(.) Q C ≤ Q’ C VaVa VbVb Global Optimum f*(.) QPQP Previous labelling f’(.) VaVa VbVb
43
Analysis VaVa VbVb Current labelling f(.) Q C ≤ Q’ C VaVa VbVb Partially Optimal f’’(.) Previous labelling f’(.) VaVa VbVb Q’ 0 ≤
44
Analysis VaVa VbVb Current labelling f(.) Q P - Q’ C VaVa VbVb Partially Optimal f’’(.) Previous labelling f’(.) VaVa VbVb Q P - Q’ 0 ≥
45
Analysis VaVa VbVb Current labelling f(.) Q P - Q’ C VaVa VbVb Partially Optimal f’’(.) Local Optimal f’(.) VaVa VbVb Q P - Q’ 0 ≤ 0
46
Analysis VaVa VbVb Current labelling f(.) VaVa VbVb Partially Optimal f’’(.) Local Optimal f’(.) VaVa VbVb Q P - Q’ 0 ≤ 0 Take expectation over all intervals
47
Analysis Truncated Linear Q P ≤ 2 + max 2M, L’ L’M Q* L’ = M4Gupta and Tardos, 2000 L’ = √2M 2 + √2 Truncated Quadratic Q P ≤ O(√M) Q* L’ = √M
48
Outline Move Space Graph Construction Sketch of the Analysis Results
49
Synthetic Data - Truncated Linear Faster than TRW-S Comparable to Range Moves With LP Relaxation guarantees Time (sec) Energy
50
Synthetic Data - Truncated Quadratic Faster than TRW-S Comparable to Range Moves With LP Relaxation guarantees Time (sec) Energy
51
Stereo Correspondence Disparity Map Unary Potential: Similarity of pixel colour Pairwise Potential: Truncated convex
52
Stereo Correspondence AlgoEnergy1Time1Energy2Time2 Swap367820018.48370726820.25 Exp367795011.7336878748.79 TRW-S3677578131.653679563332.94 BP3789486272.065180705331.36 Range368684497.233679552141.78 Our3613003120.143679552191.20 Teddy
53
Stereo Correspondence AlgoEnergy1Time1Energy2Time2 Swap367820018.48370726820.25 Exp367795011.7336878748.79 TRW-S3677578131.653679563332.94 BP3789486272.065180705331.36 Range368684497.233679552141.78 Our3613003120.143679552191.20 Teddy
54
Stereo Correspondence AlgoEnergy1Time1Energy2Time2 Swap64522728.8670912020.04 Exp6349319.527233609.78 TRW-S63472094.86651696226.07 BP662108170.672155759244.71 Range63472039.7565169680.40 Our63472066.1365169680.70 Tsukuba
55
Summary Moves that give LP guarantees Similar results to TRW-S Faster than TRW-S because of graph cuts
56
Questions Not Yet Answered Move-making gives LP guarantees –True for all MAP estimation problems? Huber function? Parallel Imaging Problem? Primal-dual method? Solving more complex relaxations?
57
Questions? Improved Moves for Truncated Convex Models Kumar and Torr, NIPS 2008 http://www.robots.ox.ac.uk/~pawan/
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.