Download presentation
Presentation is loading. Please wait.
1
Oblivious Transfer and Linear Functions Ivan Damgård, Louis Salvail, Christian Schaffner (BRICS, University of Aarhus, Denmark) Serge Fehr (CWI Amsterdam, The Netherlands) CRYPTO 2006, Santa Barbara Wednesday, August 23, 2006
2
2 / 25 Agenda OT and Randomized OT Characterisation of Sender-Security with Linear Functions Application: Universal OT Conclusion
3
3 / 25 1-2 Oblivious Transfer 1 - 2 OT S C S 0 ; S 1 C 2 f 0 ; 1 g [ W i esner s 70, R a b i n 81, E ven G o ld re i c h L empe l 82 K i l i an 88, C r ¶ epeau 89,... ] ² correc t ness: wor k s f or h ones t p l ayers, ² rece i ver-secur i t y: 8 ~ A d i s h ones t sen d ers, ~ A s h ou ld no t l earn C, ² sen d er-secur i t y: 8 ~ B d i s h ones t rece i vers, ~ B s h ou ld no t l earn S 1 ¡ C.
4
4 / 25 ( S C © S C ) © S C S C Randomized 1-2 Oblivious Transfer R an d 1 - 2 OT S 0 ; S 1 C 2 f 0 ; 1 g CS 0 ; S 1 S 0 © S 0 ; S 1 © S 1 S C
5
5 / 25 Definition Rand 1-2 OT R an d 1 - 2 OT C 2 f 0 ; 1 g S 0 ; S 1 S C [ C r ¶ epeau S avv i d es S c h a ® ner W u ll sc hl eger 06 ] P ro t oco l ¦ compu t es R an d 1 - 2 OT secure l y, i f 8 i npu t s C ¦ pro d ucesou t pu t ssuc h t h a t ² correc t ness: I f A an d B h ones t, A ge t s S 0 ; S 1, B ge t s S C. ° ° P S 1 ¡ D VS D D ¡ P unif ¢ P VS D D ° ° = 0 ² rece i ver-secur i t y: 8 ~ A d i s h ones t sen d ersw i t h v i ew U, P UC = P U ¢ P C. ² sen d er-secur i t y: 8 ~ B d i s h ones t rece i versw i t h v i ew V, 9 D 2 f 0 ; 1 g s. t. d ( S 1 ¡ D j VS D D ) = 0.
6
6 / 25 R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g Sender-Security for Rand OT of Bits 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0 01 0 ½¼ 1 ¼0 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ), ) d ( S 0 © S 1 j V ) = 0 D ? V.
7
7 / 25 Sender-Security for Rand OT of Bits R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g 01 0 ½¼ 1 ¼0 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) 01 0 ¼¼ 1 00 01 0 ¼0 1 ¼0 S 0 S 1 S 1 S 0 P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) V. 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0, d ( S 0 © S 1 j V ) = 0
8
8 / 25 Sender-Security for Rand OT of Bits V R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g 01 0 ab 1 cd S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) 01 0 aa 1 cc 01 0 0b-a 1 0 S 0 S 1 S 1 S 0 w l og: b ¸ aa + d = c + b c + ( b ¡ a ) = d ) 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0 d ( S 0 © S 1 j V ) = 0 P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v )
9
9 / 25 Characterisation of Sender-Security ) 8 NDLF ¯ : d ( ¯ ( S 0 ; S 1 ) j V ) · " 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) · ". V R an d 1 - 2 OT CS C S 0 ; S 1 2 f 0 ; 1 g `
10
10 / 25 Characterisation of Sender-Security 8 NDLF ¯ : d ( ¯ ( S 0 ; S 1 ) j V ) · " = 2 2 ` + 1 ) 9 D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) · ". T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) · " = 2 2 ` + 1 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) · ". R an d 1 - 2 OT CS C V. S 0 ; S 1 2 f 0 ; 1 g `
11
11 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0. P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v )
12
12 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
13
13 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
14
14 / 25 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g d + e = a + h P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
15
15 / 25 S 1 Proof for, perfect case ` = 2 00011011 00 abcd 01 efgh 10 ijkl 11 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n + + ¡ + + ¡ + ¡ ¡ b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
16
16 / 25 S 1 Proof for, perfect case ` = 2 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n + + ¡ + + ¡ + ¡ ¡ b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0. 00101101010 abcd 0101 efgh 1010 ijkl 1 mnop ¯ ( s 0 ; s 1 ) : = s 2 0 © s 2 1
17
17 / 25 b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n + + ¡ + + ¡ + ¡ ¡ Proof for, perfect case ` = 2 0010110101 0 abcd 0101 efgh 1010 ijkl 1 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) ¯ ( s 0 ; s 1 ) : = s 2 0 © s 2 1 ¯ ( s 0 ; s 1 ) = 1 ¯ ( s 0 ; s 1 ) = 0 ¯ ( s 0 ; s 1 ) = 1 ¯ ( s 0 ; s 1 ) = 0 b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
18
18 / 25 b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n Proof for, perfect case ` = 2 0010110101 0 abcd 0101 efgh 1010 ijkl 1 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) ¯ ( s 0 ; s 1 ) = 1 ¯ ( s 0 ; s 1 ) = 0 b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p b + d + f + h + i + k + m + o = a + c + e + g + j + l + n + p ¯ ( s 0 ; s 1 ) : = s 1 0 © s 2 1 P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
19
19 / 25 b + e = a + f c + e = a + g d + e = a + h d + m = a + p d + i = a + l c + i = a + k c + m = a + o b + i = a + j b + m = a + n Proof for, perfect case ` = 2 0010110101 0 abcd 0101 efgh 1010 ijkl 1 mnop 00011011 00 aaaa 01 eeee 10 iiii 11 mmmm 00011011 00 0b-ac-ad-a 01 0b-ac-ad-a 10 0b-ac-ad-a 11 0b-ac-ad-a S 1 S 0 S 0 S 1 S 0 S 1 P S 0 S 1 V ( ¢ ; ¢ ; v ) b + d + e + g + j + l + m + o = a + c + f + h + i + k + n + p 8 < : 8 < : b + d + f + h + i + k + m + o = a + c + e + g + j + l + n + p... P S 0 S 1 DV ( ¢ ; ¢ ; 0 ; v ) P S 0 S 1 DV ( ¢ ; ¢ ; 1 ; v ) T h eorem: I ff ora ll NDLF ¯, d ( ¯ ( S 0 ; S 1 ) j V ) = 0 h o ld s, t h en t h ereex i s t s D 2 f 0 ; 1 g suc h t h a t d ( S 1 ¡ D j VS D D ) = 0.
20
20 / 25 Agenda OT and Randomized OT Characterisation of Sender-Security with Linear Functions Application: Universal OT Conclusion
21
21 / 25 Application: Universal OT R an d 1 - 2 OT S C C 2 f 0 ; 1 g U n i versa l OT X 2 f 0 ; 1 g 2 n P Y j X * S 0 ; S 1 Y. [ C ac h i n 98 ] H 1 ( X j Y ) ¸ n
22
22 / 25 X 0 ; X 1 2 f 0 ; 1 g n 0 1 1 1 0 1 Reduction: Protocol S 0 ; S 1 ran d om S 1 = ? S 0 UOT C = 0 F 0 ; F 1 ² correc t ness: I f A an d B h ones t, A ge t s S 0 ; S 1, B ge t s S C. Y = X C 0 1 1 ? ? ? X 1 X 0 F 0 2 R F F 1 2 R F ² rece i ver-secur i t y: 8 ~ A d i s h ones t sen d ersw i t h v i ew U, P UC = P U ¢ P C. H 1 ( X j Y ) ¸ n 8 < : 9 = ;
23
23 / 25 Reduction: Problem ran d om UOT S 0 ; S 1 F 0 ; F 1 F 0 2 R F F 1 2 R F Y. sen d er-secur i t y: 9 D s. t. d ( S 1 ¡ D j VDS D ) · " S D S 1 ¡ D = ? P Y j X 0 X 1 ¢ ¢ ¢ ¢ x 6 = x 0 ) F ( x ) ; F ( x 0 ) i n- d epen d en t an d un i f orm. X 0 2 f 0 ; 1 g n F 0 2 R F S 0 2 f 0 ; 1 g ` H 1 ( X 0 j V ) b i g ) d ( S 0 j VF ) sma ll P r i vacy A mp li¯ ca t i on X 0 ; X 1 2 f 0 ; 1 g n 0 1 0 1 X 1 X 0 9 = ; 8 < : H 1 ( X 0 X 1 j Y ) ¸ n
24
24 / 25 Reduction: Problem ran d om UOT S 0 ; S 1 F 0 ; F 1 F 0 2 R F F 1 2 R F Y. sen d er-secur i t y: 9 D s. t. d ( S 1 ¡ D j VDS D ) · " S D S 1 ¡ D = ? P Y j X 0 X 1 ¢ ¢ ¢ ¢ X 0 2 f 0 ; 1 g n F 0 2 R F S 0 2 f 0 ; 1 g ` X 0 ; X 1 2 f 0 ; 1 g n 0 1 0 1 X 1 X 0 9 = ; 8 < : T h eorem: 8 NDLF ¯ : d ( ¯ ( S 0 ; S 1 ) j V ) sma ll ) ¯ ( S 0 ; S 1 ) 2 f 0 ; 1 g X 1 2 f 0 ; 1 g n F 1 2 R F S 1 2 f 0 ; 1 g ` O b serve: T h ec l ass F ¯ : = f ¯ ( F 0 ( ¢ ) ; F 1 ( ¢ )) j F 0 2 F ; F 1 2 F g i s s t rong l y t wo-un i versa l. H 1 ( X 0 X 1 j V ) b i g ) d ( ¯ ( S 0 ; S 1 ) j V ) sma ll H 1 ( X 0 j V ) b i g P r i vacy A mp li¯ ca t i on ) d ( S 0 j VF ) sma ll PA H 1 ( X 0 X 1 j Y ) ¸ n
25
25 / 25 Conclusion Characterisation of sender-privacy: A protocol for Rand-OT is secure against a cheating receiver, iff he gets no information about any non-degenerate linear function. Observation: NDLF compose well with strongly two-universal hash functions. yields powerful technique: Enough min-entropy suffices to get an OT via (strongly) two-universal hashing, also works in quantum settings. Reductions: Simpler analyses of reductions from String-OT to weaker primitives, better parameters.
26
Thank you
27
27 / 25 PA : d ( F ( X ) |{z} ¯ ( S 0 ; S 1 ) j F ; V = v |{z} V ) · 2 ¡ 1 2 ¡ H 1 ( X j V = v ) ¡ 1 ¢ The Bottom Line Bob Alice 011001010110 v i ew V = v. S 0 ; S 1 2 f 0 ; 1 g ` X 2 f 0 ; 1 g n · " ¢ 2 ¡ 2 ` ¡ 1 9 C 0 s. t. d ( S 1 ¡ C 0 j VC 0 S C 0 ) · " F 2 R F ¯ : = f ¯ ( F 0 ( ¢ ) ; F 1 ( ¢ )) j F 0 2 F 0 ; F 1 2 F 1 g 101, 001 F 0 ; F 1 H 1 ( X j V = v ) ¸ ®n F 0 2 R F F 1 2 R F
28
28 / 25 Privacy Amplification (PA) 011001010110101001 X 2 f 0 ; 1 g n x 6 = x 0 ) F ( x ) ; F ( x 0 ) i n d epen d en t an d un i - f orm. F ( X ) 2 f 0 ; 1 g ` F ( X ) = ? v i ew V = v. T h m: d ( F ( X ) j F ; V = v ) · 2 ¡ 1 2 ¡ H 1 ( X j V = v ) ¡ ` ¢ F 2 R F. [ I mpag l i azzo L ev i n L u b y 89, H º as t a d ILL 99, B enne tt B rassar d C r ¶ epeau M aurer 95, R enner 06 ]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.