Presentation is loading. Please wait.

Presentation is loading. Please wait.

Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.

Similar presentations


Presentation on theme: "Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute."— Presentation transcript:

1 Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute of Technology May 24, 2005

2 Objectives  Calculate information content of trace gas concentration  Investigate effect of signal-to-noise ratio (SNR) on retrieval precision  Compare clear and aerosol-laden scenes  Assess impact of varying surface types  Analyze benefits of physics-based retrieval

3 Retrieval Technique  Forward Model Description of radiative transfer in the atmosphere Simulation of instrument response  Inverse Method Iteration to best match the observed spectrum Optimal Estimation Theory (Rodgers, 2000)

4 Physics of Radiative Transfer  Fundamental equation of radiative transfer  Multiple scattering algorithm: Isaacs 2-stream, DISORT 16- stream  Radiative transport algorithm: standard band model with Curtis-Godson path averaging  Band model resolution: 5 cm -1 ; 33 absorption coefficients per spectral bin

5 Optimal Estimation  Measurement Description  Minimization of Cost Function

6 Need for a priori Information  Ill-posed, nonlinear inversion problem  A priori make problem well-posed  Based on what we already know about the atmospheric or surface state  Obtained from climatological data, radiosonde measurements, or ad hoc descriptions  Care needed in selecting a priori

7 Weighting Functions: CO 2 Pressure (mbar) Weighting Function (  W/m 2 /sr/nm/ppmv)

8 Weighting Functions: H 2 O Weighting Function (  W/m 2 /sr/nm/ppmv) Pressure (mbar)

9 Weighting Functions: CH 4 Weighting Function (  W/m 2 /sr/nm/ppmv) Pressure (mbar)

10 Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Column Weighting Function: CO 2

11 Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Column Weighting Function: H 2 O

12 Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Column Weighting Function: CH 4

13 Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Weighting Function: Surface Pressure

14 Weighting Function: Surface Type I Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm)

15 Weighting Function: Surface Type II Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm)

16 Weighting Function: Surface Type III Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm)

17 Retrieval Parameters  CO 2 column scaling factor  CH 4 column scaling factor  H 2 O column scaling factor  Surface pressure  Fractions of three surface types (1: conifer, 2: cropland, 3: desert)

18 Model Parameters  11-layer atmosphere (5 in stratosphere)  Solar Zenith Angle = 50 degrees  Nadir Viewing  Aerosol "Rural" (bottom 2 layers), "Tropospheric" (next 4), "Background Stratospheric" (rest) Visibility = 2 km, 20 km, 200 km (clear sky)

19 SNR Retrieval Precision: H 2 O Column H 2 O column scaling factor-1 Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

20 SNR Retrieval Precision: CO 2 Column CO 2 column scaling factor-1 Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

21 SNR Retrieval Precision: CH 4 Column CH 4 column scaling factor-1 Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

22 SNR Retrieval Precision: Surface Pressure Surface Pressure Uncertainty (mbar) Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

23 SNR Retrieval Precision: Surface Type I Uncertainty in Fraction of Surface Type I Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

24 SNR Retrieval Precision: Surface Type II Uncertainty in Fraction of Surface Type II Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

25 SNR Retrieval Precision: Surface Type III Uncertainty in Fraction of Surface Type III Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

26 Full Retrieval (SNR = 2000) Wavelength (nm) Radiance (  W/m 2 /sr/nm) Black: true Red: retrieved Blue: a priori Red: retrieved - true Blue: a priori - true Residual (  W/m 2 /sr/nm)

27 Retrieval of Surface Types Only (SNR = 2000) Wavelength (nm) Radiance (  W/m 2 /sr/nm) Residual (  W/m 2 /sr/nm) Black: true Red: retrieved Blue: a priori Red: retrieved - true Blue: a priori - true

28 Surface Retrieval Precision FractionFull Retrieval (%)Only Surface Retrieval (%) Surface Type 1 0.461.52 Surface Type 2 06.09 Surface Type 3 0.9925.2

29 Computer Specifications  Dual Processor Intel Xeon CPU  Clock speed: 2.2 GHz  RAM: 2 GB  8-9 minutes per retrieval

30 Conclusions  Different AVIRIS channels have different sensitivity to atmospheric/surface parameters  Retrieval precisions improve with increasing SNR  Even cloudy scenes can be retrieved  Error in atmospheric correction can lead to significant error in surface retrieval


Download ppt "Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute."

Similar presentations


Ads by Google