Download presentation
Presentation is loading. Please wait.
1
paul@sep.stanford.edu Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP
2
paul@sep.stanford.edu Motivation
3
paul@sep.stanford.edu Wave-equation MVA (WEMVA) Band-limited Multi-pathing Resolution Born approximation –small anomaly Rytov approximation –phase unwrapping
4
paul@sep.stanford.edu Wave-equation MVA (WEMVA) WE tomography –data space WE MVA –image space
5
paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example
6
paul@sep.stanford.edu A tomography problem Traveltime MVA Wave-equation tomography Wave-equation MVA qq t traveltime d data R image L ray fieldwavefield
7
paul@sep.stanford.edu WEMVA: main idea
8
paul@sep.stanford.edu Born approximation
9
paul@sep.stanford.edu WEMVA: objective function slowness perturbation image perturbation slowness perturbation (unknown) Linear WEMVA operator image perturbation (known)
10
paul@sep.stanford.edu WEMVA: objective function Traveltime MVA Wave-equation tomography Wave-equation MVA tt dd RR
11
paul@sep.stanford.edu Fat ray: GOM example
12
paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example
13
paul@sep.stanford.edu “Data” estimate Traveltime MVA Wave-equation tomography Wave-equation MVA tt dd RR ray tracing data modeling residual migration
14
paul@sep.stanford.edu Prestack Stolt residual migration Background image R 0 Velocity ratio RR0R0
15
paul@sep.stanford.edu Prestack Stolt residual migration Image perturbation RR0R0
16
paul@sep.stanford.edu Born approximation
17
paul@sep.stanford.edu Residual migration: the problem Correct velocityIncorrect velocity Zero offset image Angle gathers Zero offset image Angle gathers
18
paul@sep.stanford.edu Born approximation
19
paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example
20
paul@sep.stanford.edu Differential image perturbation Image difference Image differential ComputedMeasured
21
paul@sep.stanford.edu Differential image perturbation RR RR R
22
paul@sep.stanford.edu Phase perturbation
23
paul@sep.stanford.edu Differential image perturbation
24
paul@sep.stanford.edu Born approximation
25
paul@sep.stanford.edu Example: background image Zero offset image Angle gathers Background image
26
paul@sep.stanford.edu Example: differential image Zero offset image Angle gathers Differential image
27
paul@sep.stanford.edu Example: slowness inversion Slowness perturbation Image perturbation
28
paul@sep.stanford.edu Example: updated image Updated slowness Updated image
29
paul@sep.stanford.edu Example: correct image Correct slowness Correct image
30
paul@sep.stanford.edu Outline 1.WEMVA overview 2.Born image perturbation 3.Differential image perturbation 4.Example
31
paul@sep.stanford.edu Field data example North Sea –Salt environment –Subset –One non-linear iteration Migration (background image) Residual migration (image perturbation) Slowness inversion (slowness perturbation) Slowness update (updated slowness) Re-migration (updated image) location depth
32
paul@sep.stanford.edu locationdepth
33
paul@sep.stanford.edu depth velocity ratio
34
paul@sep.stanford.edu locationdepth
35
paul@sep.stanford.edu locationdepthlocation
36
paul@sep.stanford.edu locationdepthlocation
37
paul@sep.stanford.edu locationdepth
38
paul@sep.stanford.edu locationdepth
39
paul@sep.stanford.edu Summary MVA –Wavefield extrapolation methods –Born linearization –Differential image perturbations Key points –Band-limited (sharp velocity contrasts) –Multi-pathing (complicated wavefields) –Resolution (frequency redundancy)
40
paul@sep.stanford.edu
41
MVA information (a) Traveltime MVAWave-equation MVA Offset focusing (flat ADCIG) z z xx
42
paul@sep.stanford.edu MVA information (b) Traveltime MVAWave-equation MVA Offset focusing (flat ADCIG) Spatial focusing z z xx
43
paul@sep.stanford.edu MVA information (c) Traveltime MVAWave-equation MVA Offset focusing (flat ADCIG) Spatial focusing Frequency redundancy
44
paul@sep.stanford.edu WEMVA cost reduction Full image –Offset focusing –Spatial focusing –Frequency Normal incidence image –Spatial focusing –“fat” rays
45
paul@sep.stanford.edu Another example
46
paul@sep.stanford.edu Example: correct model Zero offset image Angle gathers
47
paul@sep.stanford.edu Example: background model Zero offset image Angle gathers
48
paul@sep.stanford.edu Example: correct perturbation Zero offset image Angle gathers
49
paul@sep.stanford.edu Example: differential perturbation Zero offset image Angle gathers
50
paul@sep.stanford.edu Example: perturbations comparison Differential Difference Correct
51
paul@sep.stanford.edu Example: differential perturbation Zero offset image Angle gathers
52
paul@sep.stanford.edu Example: difference perturbation Zero offset image Angle gathers
53
paul@sep.stanford.edu Example: updated model Zero offset image Angle gathers
54
paul@sep.stanford.edu Example: correct model Zero offset image Angle gathers
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.