Download presentation
Presentation is loading. Please wait.
1
MAGIC Seen from the Perspective of RAGS Kathleen R. McKeown Department of Computer Science Columbia University
2
MAGIC Multimedia Abstract Generation of Intensive Care data Collaborators: Steven Feiner, Desmond Jordan Shimei Pan, James Shaw, Michelle Zhou Kris Concepcion, Liz Chen, Jeanne Fromer
3
Scenario Goal: provide post-operative information on bypass patients (CABG) Prior to completion of surgery and before transport to Cardiac Intensive Care Unit (ICU) Status needed for ICU nurse, cardiologist Time critical
5
Issues for Language Generation Conciseness: Coordinated speech and text that is brief but unambiguous Coordination with other media: Modify wording and speech to coordinate references with graphical highlighting Media specific tailoring: Produce wording appropriate for spoken language Use information from language generation to improve quality of synthesized speech
6
Status Implemented prototype showing coordination between media for limited input Text output for large numbers of input cases Undergoing evaluation *now* in ICU Runs on live data on a daily basis 5-10% error rate Continuing research on effects of LG information on prosody, partial results
8
Principles Early processes produce media independent representations Representations use partial orderings in order to make early commitments where possible and retain flexibility Both the speech and graphics content planner may add content and ordering constraints Constraints on later decisions may be added early on (e.g., lexical choice)
9
Data Server and Filter (conceptual) Input 18:25 DripsNorepinephrine 18:27 DripsNorepinephrine 18:29 Misc.Magnesium Sulfate 18:29 CardiacDefibrillated by surgeon 18:33:11100 (BP)51 (HR) 18:34:019652 Output C-inanimate entity -> C-drug -> C-operating-room-medication ->C-Drip -> C-Norepinephrine Top-level categories C-state, C-event, C-entity (abstract, physical, organization, math) Inferences Hypotension: time, duration, drugs given
10
General Content Planner - SOAP (Rhetorical, semantic, conceptual) Overview Demographics Name, Age, MRN, Gender, Doctor, Operation Medical history Lines Therapy Devices Detail View Drips (on leaving) Induction info Devices Lab report Timeline Inferences End values Conclusions
11
Speech Content Planner - Satisfying Conciseness Speech content planner groups information into sentences Ms. Jones is an 80 year old, hypertensive diabetic female patient of Dr. Smith undergoing CABG. Ms. Jones is an 80 year old, female patient of Dr. Smith undergoing CABG. She has a history of diabetes and hypertension. To satisfy communicative goal to be concise, selects adjectives, prepositional phrases when possible.
12
Input to speech content planner - semantic propositions X is-a patient X has-property last name = Jones X has-property age = 80 years X has-property history = hypertension X has-property history = diabetes X has-property gender = female X has-property surgery = CABG X has-property doctor = Y Y has-property last name = Smith
13
Forming Sentence Structure (Rhetorical, semantic, lexical, syntactic) ((relation is-a) (arg1 ((item ((class name) (last-name “Jones”))))) (arg2 ((item ((class patient)))))) ((relation is-a) (arg1 ((item ((class name) (last-name “Jones”))))) (arg2 ((item ((class patient)) (premod ((history hypertension))))))
14
3 Types of Aggregation Hypotactic aggregation: Given a set of propositions, can one be realized as a modifier? Semantic aggregation: if a patient is on multiple drips and all devices, a patient has received massive cardiotonic therapy Paratactic aggregation: Combine related propositions using conjunction and apposition
15
Coordination across media Temporal media Coordinate spoken references with highlighting of graphical references Requires negotiation of ordering and duration of media actions
16
Negotiating Ordering Spoken language generator has grammatical constraints on linear ordering Graphics generator has spatial constraints on layout Individual accounts of these constraints may result in an incoherent presentation
17
Ms. Jones is an 80 year old, diabetic, hypertensive female patient of Dr. Smith undergoing CABG.
18
Problems for Language Generation: Ordering When to provide an ordering over references? produce a partial ordering after word choice How to select an ordering compatible with graphics? produce several possibilities ordered by preference How to communicate orderings with graphics? maintain a mapping between strings and semantic objects
19
Media Negotiation (Conceptual, Semantic, Document) ä Speech components produce candidate partial orders 1.(< name age (* diabetes hypertension) gender surgeon operation) 10 2. (< name age gender surgeon operation (* diabetes hypertension) 5 3. (< name age gender (* diabetes hypertension) surgeon operation) 4
20
Media Negotiation ä Graphics components produce candidate partial orders 1. (di (highlight demographics) ((<m) (subhighlight (mrn age gender))(subhighlight (medhistory))(subhighlight (surgeon operation)))10 2. (di (highlight demographics)(* (subhighlight (mrn age gender))(subhighlight (medhistory))(subhighlight (surgeon operation))) 7
21
CTS Architecture Prosody model Speech Corpus NLG System Prosody Realizer TTSTTS Machine Learning Input Other Source Text + Text + Structure Prosodic Annotated Text Sound Rules Rules
22
Focus of Research (Rhetorical, Semantic, Syntactic, Prosodic) Build a prosody model for CTS using prosodic features (based on ToBI): pitch accent, phrase accent, boundary tone, break index. Features produced by LG Syntactic structure, POS tags, Semantic boundaries, Concept Informativeness, predictability (statistical models) Abnormality, unexpectedness, sequential rhetorical relation
23
Mapping to RAGS Data filter - conceptual General Content Planner - rhetorical, semantic, conceptual Speech Content Planner - rhetorical, semantic plus constraints on lexicalization, syntax Lexical Chooser - semantic, lexical, syntactic Media Coordination - semantic, conceptual, document Syntactic Realization - semantic, syntactic Prosody Realization - rhetorical, semantic, syntactic, prosodic
24
Acknowledgments This work was funded in part by DARPA NSF ONR New York State Center for Advanced Technology NLM
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.