Download presentation
Presentation is loading. Please wait.
2
Stanford CS223B Computer Vision, Winter 2005 Lecture 12: Filters / Motion Tracking Sebastian Thrun, Stanford Rick Szeliski, Microsoft Hendrik Dahlkamp and Dan Morris, Stanford
3
Sebastian Thrun Stanford University CS223B Computer Vision Moving Objects
4
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filter Tracking
5
Sebastian Thrun Stanford University CS223B Computer Vision Particle Filter Tracking
6
Sebastian Thrun Stanford University CS223B Computer Vision Mixture of KF / PF (Unscented PF)
7
Sebastian Thrun Stanford University CS223B Computer Vision Tracking: First Idea! updateinitial position x y x y prediction x y measurement x y
8
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filters
9
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filters prior Measurement evidence posterior
10
Sebastian Thrun Stanford University CS223B Computer Vision A Quiz prior Measurement evidence posterior?
11
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filter n Linear Measurement model n Linear Change
12
Sebastian Thrun Stanford University CS223B Computer Vision Partially Observable Markov Chains statestate x 4 state x 3 state x 2 state x 1 z2z2 z3z3 z4z4 measurement z 1 state x 4 state x 3 state x 2 state x 1 Bayes filters: HMMs DBNs POMDPs Kalman filters Condensation
13
Sebastian Thrun Stanford University CS223B Computer Vision Bayes Filters x = state z = observation u = control t = time [Kalman 60, Rabiner 85] Markov Bayes Markov
14
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filter: Measurement Update n Linear Measurement model
15
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filter: Prediction n Linear Change
16
Sebastian Thrun Stanford University CS223B Computer Vision Putting It All Together n Measurements n Change n Prediction n Measurement Update updateinitial position x y x y prediction x y measurement x y
17
Sebastian Thrun Stanford University CS223B Computer Vision Can We Do Better?
18
Sebastian Thrun Stanford University CS223B Computer Vision Kalman, Better! initial positionpredictionmeasurement next prediciton update
19
Sebastian Thrun Stanford University CS223B Computer Vision We Can Estimate Velocity! past measurements prediction
20
Sebastian Thrun Stanford University CS223B Computer Vision Kalman Filter For 2D Tracking n Linear Measurement model (now with 4 state variables) n Linear Change
21
Sebastian Thrun Stanford University CS223B Computer Vision Putting It Together Again n Measurements n Change n Prediction n Measurement Update
22
Sebastian Thrun Stanford University CS223B Computer Vision Why Linear??
23
Sebastian Thrun Stanford University CS223B Computer Vision Nonlinear Functions…
24
Sebastian Thrun Stanford University CS223B Computer Vision Linearization: Extended Kalman Filter
25
Sebastian Thrun Stanford University CS223B Computer Vision Unscented Kalman Filter
26
Sebastian Thrun Stanford University CS223B Computer Vision Particle Filters n An alternative technique for tracking n Easier to implement n Nonlinear n Better for data association n In CV, known as “Condensation Algorithm”
27
Sebastian Thrun Stanford University CS223B Computer Vision Particle Filter
28
Sebastian Thrun Stanford University CS223B Computer Vision Particle Filters: Basic Idea (equality for ) set of n particles X t See e.g., [Doucet 98, deFreitas 98]
29
Sebastian Thrun Stanford University CS223B Computer Vision Basic Particle Filter Algorithm Initialization: X 0 n particles x 0 [i] ~ p(x 0 ) particleFilters( X t 1 ){ for i=1 to n x t [i] ~ p(x t | x t 1 [i] ) (prediction) w t [i] = p(z t | x t [i] ) (importance weights) endfor for i=1 to n include x t [i] in X t with probability w t [i] (resampling) }
30
Sebastian Thrun Stanford University CS223B Computer Vision Particle Filters: Illustration With: Wolfram Burgard, Dieter Fox, Frank Dellaert
31
Sebastian Thrun Stanford University CS223B Computer Vision Examples Siu Chi Chan McGill University
32
Sebastian Thrun Stanford University CS223B Computer Vision Another Example Mike Isard and Andrew Blake
33
Sebastian Thrun Stanford University CS223B Computer Vision Tracking Fast moving Objects K. Toyama, A.Blake
34
Sebastian Thrun Stanford University CS223B Computer Vision Tracking with Omni directional Vision n Ben Krose’s Research
35
Sebastian Thrun Stanford University CS223B Computer Vision More Particle Filter Tracking David Stavens, Andrew Lookingbill, David Lieb, CS223b Winter 2004
36
Sebastian Thrun Stanford University CS223B Computer Vision Ninlinearity in the Particle Filter
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.