Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University Sergey Fomel UT Austin.

Similar presentations


Presentation on theme: "Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University Sergey Fomel UT Austin."— Presentation transcript:

1 paul.sava@stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University Sergey Fomel UT Austin

2 paul.sava@stanford.edu The problem Depth imaging –image: migration –velocity: migration velocity analysis Migration and MVA are inseparable “Everyhing depends on v(x,y,z)” »JF Claerbout, 1999

3 paul.sava@stanford.edu An approximation

4 paul.sava@stanford.edu A better approximation

5 paul.sava@stanford.edu In the “big picture” Kirchhoff migration traveltime tomography wavefronts wave-equation migration wave-equation MVA (WEMVA) wavefields

6 paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications

7 paul.sava@stanford.edu Wavefield scattering

8 paul.sava@stanford.edu Wavefield scattering

9 paul.sava@stanford.edu Scattered wavefield Medium perturbation Wavefield perturbation

10 paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications

11 paul.sava@stanford.edu Imaging: Correct velocity Background velocity Migrated image Reflectivity model What the data tell us...What migration does... location depth location depth

12 paul.sava@stanford.edu Imaging: Incorrect velocity Perturbed velocity Migrated image Reflectivity model What the data tell us...What migration does... location depth location depth

13 paul.sava@stanford.edu WEMVA objective Velocity perturbation Image perturbation slowness perturbation (unknown) WEMVA operator image perturbation (known) location depth location depth

14 paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications

15 paul.sava@stanford.edu Double Square-Root Equation Fourier Finite Difference Generalized Screen Propagator Wavefield extrapolation

16 paul.sava@stanford.edu Slowness perturbation

17 paul.sava@stanford.edu slowness perturbation background wavefield perturbation Wavefield perturbation

18 paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications

19 paul.sava@stanford.edu Linearizations Unit circle Born approximation

20 paul.sava@stanford.edu Linearizations Unit circle

21 paul.sava@stanford.edu Linearizations Unit circle

22 paul.sava@stanford.edu Linear WEMVA slowness perturbation (unknown) WEMVA operator image perturbation (known)

23 paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications

24 paul.sava@stanford.edu Correct velocity

25 paul.sava@stanford.edu Incorrect velocity

26 paul.sava@stanford.edu Image perturbation

27 paul.sava@stanford.edu Failure!

28 paul.sava@stanford.edu Small phase limitation

29 paul.sava@stanford.edu What can we do? Define another objective function –e.g. DSO Construct an image perturbation which obeys the Born approximation...

30 paul.sava@stanford.edu Residual migration

31 paul.sava@stanford.edu Analytical image perturbation Computed analytically Picked from data

32 paul.sava@stanford.edu Analytical image perturbation

33 paul.sava@stanford.edu Image perturbations comparison

34 paul.sava@stanford.edu Slowness perturbations

35 paul.sava@stanford.edu Migrated images

36 paul.sava@stanford.edu Migrated images: angle gathers

37 paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications

38 paul.sava@stanford.edu Other applications 4-D seismic monitoring –image perturbations over time –no need to construct Focusing MVA –zero offset data

39 paul.sava@stanford.edu 4D seismic monitoring

40 paul.sava@stanford.edu 4D seismic monitoring

41 paul.sava@stanford.edu 4D seismic monitoring

42 paul.sava@stanford.edu Focusing MVA Incorrect image Correct image

43 paul.sava@stanford.edu Focusing MVA

44 paul.sava@stanford.edu Focusing MVA

45 paul.sava@stanford.edu Focusing MVA

46 paul.sava@stanford.edu Focusing MVA

47 paul.sava@stanford.edu Focusing MVA

48 paul.sava@stanford.edu Focusing MVA

49 paul.sava@stanford.edu Summary Wave-equation MVA wavefield extrapolation image space objective focusing and moveouts interpretation guided Linearization linear operator construct image perturbations


Download ppt "Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University Sergey Fomel UT Austin."

Similar presentations


Ads by Google