Download presentation
Presentation is loading. Please wait.
1
paul.sava@stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University Sergey Fomel UT Austin
2
paul.sava@stanford.edu The problem Depth imaging –image: migration –velocity: migration velocity analysis Migration and MVA are inseparable “Everyhing depends on v(x,y,z)” »JF Claerbout, 1999
3
paul.sava@stanford.edu An approximation
4
paul.sava@stanford.edu A better approximation
5
paul.sava@stanford.edu In the “big picture” Kirchhoff migration traveltime tomography wavefronts wave-equation migration wave-equation MVA (WEMVA) wavefields
6
paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications
7
paul.sava@stanford.edu Wavefield scattering
8
paul.sava@stanford.edu Wavefield scattering
9
paul.sava@stanford.edu Scattered wavefield Medium perturbation Wavefield perturbation
10
paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications
11
paul.sava@stanford.edu Imaging: Correct velocity Background velocity Migrated image Reflectivity model What the data tell us...What migration does... location depth location depth
12
paul.sava@stanford.edu Imaging: Incorrect velocity Perturbed velocity Migrated image Reflectivity model What the data tell us...What migration does... location depth location depth
13
paul.sava@stanford.edu WEMVA objective Velocity perturbation Image perturbation slowness perturbation (unknown) WEMVA operator image perturbation (known) location depth location depth
14
paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications
15
paul.sava@stanford.edu Double Square-Root Equation Fourier Finite Difference Generalized Screen Propagator Wavefield extrapolation
16
paul.sava@stanford.edu Slowness perturbation
17
paul.sava@stanford.edu slowness perturbation background wavefield perturbation Wavefield perturbation
18
paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications
19
paul.sava@stanford.edu Linearizations Unit circle Born approximation
20
paul.sava@stanford.edu Linearizations Unit circle
21
paul.sava@stanford.edu Linearizations Unit circle
22
paul.sava@stanford.edu Linear WEMVA slowness perturbation (unknown) WEMVA operator image perturbation (known)
23
paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications
24
paul.sava@stanford.edu Correct velocity
25
paul.sava@stanford.edu Incorrect velocity
26
paul.sava@stanford.edu Image perturbation
27
paul.sava@stanford.edu Failure!
28
paul.sava@stanford.edu Small phase limitation
29
paul.sava@stanford.edu What can we do? Define another objective function –e.g. DSO Construct an image perturbation which obeys the Born approximation...
30
paul.sava@stanford.edu Residual migration
31
paul.sava@stanford.edu Analytical image perturbation Computed analytically Picked from data
32
paul.sava@stanford.edu Analytical image perturbation
33
paul.sava@stanford.edu Image perturbations comparison
34
paul.sava@stanford.edu Slowness perturbations
35
paul.sava@stanford.edu Migrated images
36
paul.sava@stanford.edu Migrated images: angle gathers
37
paul.sava@stanford.edu Agenda Theoretical background WEMVA methodology Scattering Imaging Non-linear operator Linear operator Image perturbation WEMVA applications
38
paul.sava@stanford.edu Other applications 4-D seismic monitoring –image perturbations over time –no need to construct Focusing MVA –zero offset data
39
paul.sava@stanford.edu 4D seismic monitoring
40
paul.sava@stanford.edu 4D seismic monitoring
41
paul.sava@stanford.edu 4D seismic monitoring
42
paul.sava@stanford.edu Focusing MVA Incorrect image Correct image
43
paul.sava@stanford.edu Focusing MVA
44
paul.sava@stanford.edu Focusing MVA
45
paul.sava@stanford.edu Focusing MVA
46
paul.sava@stanford.edu Focusing MVA
47
paul.sava@stanford.edu Focusing MVA
48
paul.sava@stanford.edu Focusing MVA
49
paul.sava@stanford.edu Summary Wave-equation MVA wavefield extrapolation image space objective focusing and moveouts interpretation guided Linearization linear operator construct image perturbations
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.